146 resultados para Capital Asset Pricing Model
Resumo:
Asset allocation decisions and value at risk calculations rely strongly on volatility estimates. Volatility measures such as rolling window, EWMA, GARCH and stochastic volatility are used in practice. GARCH and EWMA type models that incorporate the dynamic structure of volatility and are capable of forecasting future behavior of risk should perform better than constant, rolling window volatility models. For the same asset the model that is the ‘best’ according to some criterion can change from period to period. We use the reality check test∗ to verify if one model out-performs others over a class of re-sampled time-series data. The test is based on re-sampling the data using stationary bootstrapping. For each re-sample we check the ‘best’ model according to two criteria and analyze the distribution of the performance statistics. We compare constant volatility, EWMA and GARCH models using a quadratic utility function and a risk management measurement as comparison criteria. No model consistently out-performs the benchmark.
Resumo:
This paper investigates heterogeneity in the market assessment of public macro- economic announcements by exploring (jointly) two main mechanisms through which macroeconomic news might enter stock prices: instantaneous fundamental news im- pacts consistent with the asset pricing view of symmetric information, and permanent order ow e¤ects consistent with a microstructure view of asymmetric information related to heterogeneous interpretation of public news. Theoretical motivation and empirical evidence for the operation of both mechanisms are presented. Signi cant in- stantaneous news impacts are detected for news related to real activity (including em- ployment), investment, in ation, and monetary policy; however, signi cant order ow e¤ects are also observed on employment announcement days. A multi-market analysis suggests that these asymmetric information e¤ects come from uncertainty about long term interest rates due to heterogeneous assessments of future Fed responses to em- ployment shocks.
Resumo:
The dissertation goal is to quantify the tail risk premium embedded into hedge funds' returns. Tail risk is the probability of extreme large losses. Although it is a rare event, asset pricing theory suggests that investors demand compensation for holding assets sensitive to extreme market downturns. By de nition, such events have a small likelihood to be represented in the sample, what poses a challenge to estimate the e ects of tail risk by means of traditional approaches such as VaR. The results show that it is not su cient to account for the tail risk stemming from equities markets. Active portfolio management employed by hedge funds demand a speci c measure to estimate and control tail risk. Our proposed factor lls that void inasmuch it presents explanatory power both over the time series as well as the cross-section of funds' returns.
Resumo:
Peer-to-peer markets are highly uncertain environments due to the constant presence of shocks. As a consequence, sellers have to constantly adjust to these shocks. Dynamic Pricing is hard, especially for non-professional sellers. We study it in an accommodation rental marketplace, Airbnb. With scraped data from its website, we: 1) describe pricing patterns consistent with learning; 2) estimate a demand model and use it to simulate a dynamic pricing model. We simulate it under three scenarios: a) with learning; b) without learning; c) with full information. We have found that information is an important feature concerning rental markets. Furthermore, we have found that learning is important for hosts to improve their profits.
Resumo:
The main purpose of this paper is to propose a methodology to obtain a hedge fund tail risk measure. Our measure builds on the methodologies proposed by Almeida and Garcia (2015) and Almeida, Ardison, Garcia, and Vicente (2016), which rely in solving dual minimization problems of Cressie Read discrepancy functions in spaces of probability measures. Due to the recently documented robustness of the Hellinger estimator (Kitamura et al., 2013), we adopt within the Cressie Read family, this specific discrepancy as loss function. From this choice, we derive a minimum Hellinger risk-neutral measure that correctly prices an observed panel of hedge fund returns. The estimated risk-neutral measure is used to construct our tail risk measure by pricing synthetic out-of-the-money put options on hedge fund returns of ten specific categories. We provide a detailed description of our methodology, extract the aggregate Tail risk hedge fund factor for Brazilian funds, and as a by product, a set of individual Tail risk factors for each specific hedge fund category.
Resumo:
A simple model incorporating rent-seeking into the standard neoclassical model of capital accumulation is presented. It embodies the idea that the performance of an economy depends on the efficiency of its institutions. It is shown that welfare is positively affected by the institutional efficiency, although output is not necessarily so. It is also shown that an economy with a monopolistic rent-seeker performs better than one with a competitive rent-seeking industry.
Resumo:
en_US
Resumo:
This paper investigates an intertemporal optimization model in order to analyze the current account of the G-7 countries, measured as the present value of the future changes in net output. The study compares observed and forecasted series, generated by the model, using Campbell & Shiller’s (1987) methodology. In the estimation process, the countries are considered separately (with OLS technique) as well as jointly (SURE approach), to capture contemporaneous correlations of the shocks in net output. The paper also proposes a note on Granger causality and its implications to the optimal current account. The empirical results are sensitive to the technique adopted in the estimation process and suggest a rejection of the model in the G-7 countries, except for the USA and Japan, according to some papers presented in the literature.
Resumo:
This paper investigates the importance of ow of funds as an implicit incentive in the asset management industry. We build a two-period bi- nomial moral hazard model to explain the trade-o¤s between ow, per- formance and fees where e¤ort depends on the combination of implicit ( ow of funds) and explicit (performance fee) incentives. Two cases are considered. With full commitment, the investor s relevant trade-o¤ is to give up expected return in the second period vis-à-vis to induce e¤ort in the rst period. The more concerned the investor is with today s pay- o¤, the more willing he will be to give up expected return in the second period by penalizing negative excess return in the rst period. Without full commitment, the investor learns some symmetric and imperfect infor- mation about the ability of the manager to obtain positive excess return. In this case, observed returns reveal ability as well as e¤ort choices. We show that powerful implicit incentives may explain the ow-performance relationship with a numerical solution. Besides, risk aversion explains the complementarity between performance fee and ow of funds.
Resumo:
Procuramos apresentar neste trabalho a importância e os efeitos dos mercados internos de capitais, e as conseqüências quando da sua aplicação. Para isso, aplicamos inicialmente um modelo básico de mercados internos de capitais, avaliando os pontos atingidos e algumas idéias não abrangidas por ele. Exemplificamos com uma situação de aplicação de recursos entre divisões de uma pequena empresa diversificada e seu fracasso devido à má alocação desses recursos. Na seqüência, identificamos modelos que, quando aplicados às situações em que os mercados internos de capitais não funcionaram, foram capazes de apontar o porquê, indicando possíveis interferências e impedimentos. Por fim, aplicamos um modelo que permite comprovar a ineficiência na transferência de recursos quando esses vão na direção das divisões com as piores oportunidades de investimento.
Resumo:
Parametric term structure models have been successfully applied to innumerous problems in fixed income markets, including pricing, hedging, managing risk, as well as studying monetary policy implications. On their turn, dynamic term structure models, equipped with stronger economic structure, have been mainly adopted to price derivatives and explain empirical stylized facts. In this paper, we combine flavors of those two classes of models to test if no-arbitrage affects forecasting. We construct cross section (allowing arbitrages) and arbitrage-free versions of a parametric polynomial model to analyze how well they predict out-of-sample interest rates. Based on U.S. Treasury yield data, we find that no-arbitrage restrictions significantly improve forecasts. Arbitrage-free versions achieve overall smaller biases and Root Mean Square Errors for most maturities and forecasting horizons. Furthermore, a decomposition of forecasts into forward-rates and holding return premia indicates that the superior performance of no-arbitrage versions is due to a better identification of bond risk premium.
Resumo:
We develop a job-market signaling model where signals may convey two pieces of information. This model is employed to study the GED exam and countersignaling (signals non-monotonic in ability). A result of the model is that countersignaling is more expected to occur in jobs that require a combination of skills that differs from the combination used in the schooling process. The model also produces testable implications consistent with evidence on the GED: (i) it signals both high cognitive and low non-cognitive skills and (ii) it does not affect wages. Additionally, it suggests modifications that would make the GED a more signal.