22 resultados para nonparametric rationality tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a systematic and unified treatment of the developments in the area of kernel estimation in econometrics and statistics. Both the estimation and hypothesis testing issues are discussed for the nonparametric and semiparametric regression models. A discussion on the choice of windowwidth is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theories can be produced by individuals seeking a good reputation of knowledge. Hence, a significant question is how to test theories anticipating that they might have been produced by (potentially uninformed) experts who prefer their theories not to be rejected. If a theory that predicts exactly like the data generating process is not rejected with high probability then the test is said to not reject the truth. On the other hand, if a false expert, with no knowledge over the data generating process, can strategically select theories that will not be rejected then the test can be ignorantly passed. These tests have limited use because they cannot feasibly dismiss completely uninformed experts. Many tests proposed in the literature (e.g., calibration tests) can be ignorantly passed. Dekel and Feinberg (2006) introduced a class of tests that seemingly have some power of dismissing uninformed experts. We show that some tests from their class can also be ignorantly passed. One of those tests, however, does not reject the truth and cannot be ignorantly passed. Thus, this empirical test can dismiss false experts.We also show that a false reputation of knowledge can be strategically sustained for an arbitrary, but given, number of periods, no matted which test is used (provided that it does not reject the truth). However, false experts can be discredited, even with bounded data sets, if the domain of permissible theories is mildly restricted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers two-sided tests for the parameter of an endogenous variable in an instrumental variable (IV) model with heteroskedastic and autocorrelated errors. We develop the nite-sample theory of weighted-average power (WAP) tests with normal errors and a known long-run variance. We introduce two weights which are invariant to orthogonal transformations of the instruments; e.g., changing the order in which the instruments appear. While tests using the MM1 weight can be severely biased, optimal tests based on the MM2 weight are naturally two-sided when errors are homoskedastic. We propose two boundary conditions that yield two-sided tests whether errors are homoskedastic or not. The locally unbiased (LU) condition is related to the power around the null hypothesis and is a weaker requirement than unbiasedness. The strongly unbiased (SU) condition is more restrictive than LU, but the associated WAP tests are easier to implement. Several tests are SU in nite samples or asymptotically, including tests robust to weak IV (such as the Anderson-Rubin, score, conditional quasi-likelihood ratio, and I. Andrews' (2015) PI-CLC tests) and two-sided tests which are optimal when the sample size is large and instruments are strong. We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU tests. Dropping the restrictive assumptions of normality and known variance, the theory is shown to remain valid at the cost of asymptotic approximations. The MM2-SU test is optimal under the strong IV asymptotics, and outperforms other existing tests under the weak IV asymptotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we focus on tests for the parameter of an endogenous variable in a weakly identi ed instrumental variable regressionmodel. We propose a new unbiasedness restriction for weighted average power (WAP) tests introduced by Moreira and Moreira (2013). This new boundary condition is motivated by the score e ciency under strong identi cation. It allows reducing computational costs of WAP tests by replacing the strongly unbiased condition. This latter restriction imposes, under the null hypothesis, the test to be uncorrelated to a given statistic with dimension given by the number of instruments. The new proposed boundary condition only imposes the test to be uncorrelated to a linear combination of the statistic. WAP tests under both restrictions to perform similarly numerically. We apply the di erent tests discussed to an empirical example. Using data from Yogo (2004), we assess the e ect of weak instruments on the estimation of the elasticity of inter-temporal substitution of a CCAPM model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os estudos sobre as expectativas de inflação no Brasil rejeitam a hipótese de racionalidade. Essa rejeição se dá por meio de testes estatísticos que identificam a existência de um viés sistemático quando comparamos a expectativa de inflação e a inflação realizada. Atualizamos alguns destes testes com o tamanho de amostra disponível atualmente. No presente trabalho, realizamos um experimento de Monte Carlo que simula o comportamento da inflação e da sua expectativa em um modelo DSGE. Esse modelo inclui uma regra monetária sujeita a choques transitórios e permanentes (que representam uma mudança de regime). A partir das séries simuladas com esses modelos, realizamos testes estatísticos para verificar se os resultados são semelhantes aos observados na prática. O exercício de simulação realizado não foi capaz de gerar séries com essas mesmas características, não trazendo evidência que esse mecanismo de aprendizado possa explicar o viés encontrado nas expectativas de inflação.