25 resultados para Three factor model
Resumo:
Este trabalho tem o objetivo de testar a qualidade preditiva do Modelo Vasicek de dois fatores acoplado ao Filtro de Kalman. Aplicado a uma estratégia de investimento, incluímos um critério de Stop Loss nos períodos que o modelo não responde de forma satisfatória ao movimento das taxas de juros. Utilizando contratos futuros de DI disponíveis na BMFBovespa entre 01 de março de 2007 a 30 de maio de 2014, as simulações foram realizadas em diferentes momentos de mercado, verificando qual a melhor janela para obtenção dos parâmetros dos modelos, e por quanto tempo esses parâmetros estimam de maneira ótima o comportamento das taxas de juros. Os resultados foram comparados com os obtidos pelo Modelo Vetor-auto regressivo de ordem 1, e constatou-se que o Filtro de Kalman aplicado ao Modelo Vasicek de dois fatores não é o mais indicado para estudos relacionados a previsão das taxas de juros. As limitações desse modelo o restringe em conseguir estimar toda a curva de juros de uma só vez denegrindo seus resultados.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.
Resumo:
Multivariate Affine term structure models have been increasingly used for pricing derivatives in fixed income markets. In these models, uncertainty of the term structure is driven by a state vector, while the short rate is an affine function of this vector. The model is characterized by a specific form for the stochastic differential equation (SDE) for the evolution of the state vector. This SDE presents restrictions on its drift term which rule out arbitrages in the market. In this paper we solve the following inverse problem: Suppose the term structure of interest rates is modeled by a linear combination of Legendre polynomials with random coefficients. Is there any SDE for these coefficients which rules out arbitrages? This problem is of particular empirical interest because the Legendre model is an example of factor model with clear interpretation for each factor, in which regards movements of the term structure. Moreover, the Affine structure of the Legendre model implies knowledge of its conditional characteristic function. From the econometric perspective, we propose arbitrage-free Legendre models to describe the evolution of the term structure. From the pricing perspective, we follow Duffie et al. (2000) in exploring Legendre conditional characteristic functions to obtain a computational tractable method to price fixed income derivatives. Closing the article, the empirical section presents precise evidence on the reward of implementing arbitrage-free parametric term structure models: The ability of obtaining a good approximation for the state vector by simply using cross sectional data.
Resumo:
Este trabalho visa comparar, estatisticamente, o desempenho de duas estratégias de imunização de carteiras de renda fixa, que são recalibradas periodicamente. A primeira estratégia, duração, considera alterações no nível da estrutura a termo da taxa de juros brasileira, enquanto a abordagem alternativa tem como objetivo imunizar o portfólio contra oscilações em nível, inclinação e curvatura. Primeiro, estimamos a curva de juros a partir do modelo polinomial de Nelson & Siegel (1987) e Diebold & Li (2006). Segundo, imunizamos a carteira de renda fixa adotando o conceito de construção de hedge de Litterman & Scheinkman (1991), porém assumindo que as taxas de juros não são observadas. O portfólio imunizado pela estratégia alternativa apresenta empiricamente um desempenho estatisticamente superior ao procedimento de duração. Mostramos também que a frequência ótima de recalibragem é mensal na análise empírica.
Resumo:
A presente dissertação investiga a relação empírica entre a crise financeira de 2007-2009, a crise da dívida soberana de 2010-2012 e a recente desaceleração dos mercados de capitais nos mercados emergentes. A exposição dos mercados emergentes à crise nos desenvolvidos é quantificada através de um modelo de interdependência de factores. Os resultados mostram que estes sofreram, de facto, um choque provocado por ambas as crises. No entanto, este foi um choque de curta duração enquanto os mercados desenvolvidos ainda lutavam com as consequências resultantes das sucessivas crises financeiras. A análise do modelo mostra ainda que após a crise da divida soberana, enquanto os mercados desenvolvidos iniciam a sua recuperação, os emergentes desaceleram o seu crescimento. De forma a completar a análise do modelo foi efectuado um estudo sobre a influência dos fluxos de capitais entre os mercados emergentes e desenvolvidos na direcção do seu crescimento, revelando que existe uma relação entre estes dois eventos.
Resumo:
The approach proposed here explores the hierarchical nature of item-level data on price changes. On one hand, price data is naturally organized around a regional strucuture, with variations being observed on separate cities. Moreover, the itens that comprise the natural structure of CPIs are also normally interpreted in terms of groups that have economic interpretations, such as tradables and non-tradables, energyrelated, raw foodstuff, monitored prices, etc. The hierarchical dynamic factor model allow the estimation of multiple factors that are naturally interpreted as relating to each of these regional and economic levels.
Resumo:
O objetivo deste trabalho é verificar se os fundos de investimento Multimercado no Brasil geram alphas significativamente positivos, ou seja, se os gestores possuem habilidade e contribuem positivamente para o retorno de seus fundos. Para calcular o alpha dos fundos, foi utilizado um modelo com sete fatores, baseado, principalmente, em Edwards e Caglayan (2001), com a inclusão do fator de iliquidez de uma ação. O período analisado vai de 2003 a 2013. Encontramos que, em média, os fundos multimercado geram alpha negativo. Porém, apesar de o percentual dos que geram interceptos positivos ser baixo, a magnitude dos mesmos é expressiva. Os resultados diferem bastante por classificação Anbima e por base de dados utilizada. Verifica-se também se a performance desses fundos é persistente através de um modelo não-paramétrico baseado em tabelas de contingência. Não encontramos evidências de persistência, nem quando separamos os fundos por classificação.
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.
Resumo:
The knowledge of the current state of the economy is crucial for policy makers, economists and analysts. However, a key economic variable, the gross domestic product (GDP), are typically colected on a quartely basis and released with substancial delays by the national statistical agencies. The first aim of this paper is to use a dynamic factor model to forecast the current russian GDP, using a set of timely monthly information. This approach can cope with the typical data flow problems of non-synchronous releases, mixed frequency and the curse of dimensionality. Given that Russian economy is largely dependent on the commodity market, our second motivation relates to study the effects of innovations in the russian macroeconomic fundamentals on commodity price predictability. We identify these innovations through a news index which summarizes deviations of offical data releases from the expectations generated by the DFM and perform a forecasting exercise comparing the performance of different models.