21 resultados para Non-parametric density estimator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo compara previsões de volatilidade de sete ações negociadas na Bovespa usando 02 diferentes modelos de volatilidade realizada e 03 de volatilidade condicional. A intenção é encontrar evidências empíricas quanto à diferença de resultados que são alcançados quando se usa modelos de volatilidade realizada e de volatilidade condicional para prever a volatilidade de ações no Brasil. O período analisado vai de 01 de Novembro de 2007 a 30 de Março de 2011. A amostra inclui dados intradiários de 5 minutos. Os estimadores de volatilidade realizada que serão considerados neste estudo são o Bi-Power Variation (BPVar), desenvolvido por Barndorff-Nielsen e Shephard (2004b), e o Realized Outlyingness Weighted Variation (ROWVar), proposto por Boudt, Croux e Laurent (2008a). Ambos são estimadores não paramétricos, e são robustos a jumps. As previsões de volatilidade realizada foram feitas através de modelos autoregressivos estimados para cada ação sobre as séries de volatilidade estimadas. Os modelos de variância condicional considerados aqui serão o GARCH(1,1), o GJR (1,1), que tem assimetrias em sua construção, e o FIGARCH-CHUNG (1,d,1), que tem memória longa. A amostra foi divida em duas; uma para o período de estimação de 01 de Novembro de 2007 a 30 de Dezembro de 2010 (779 dias de negociação) e uma para o período de validação de 03 de Janeiro de 2011 a 31 de Março de 2011 (61 dias de negociação). As previsões fora da amostra foram feitas para 1 dia a frente, e os modelos foram reestimados a cada passo, incluindo uma variável a mais na amostra depois de cada previsão. As previsões serão comparadas através do teste Diebold-Mariano e através de regressões da variância ex-post contra uma constante e a previsão. Além disto, o estudo também apresentará algumas estatísticas descritivas sobre as séries de volatilidade estimadas e sobre os erros de previsão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de precificar derivativos de taxas de juros no mercado brasileiro, este trabalho foca na implementação do modelo de Heath, Jarrow e Morton (1992) em sua forma discreta e multifatorial através de uma abordagem numérica, e, que possibilita uma grande flexibilidade na estimativa da taxa forward sob uma estrutura de volatilidade baseada em fatores ortogonais, facilitando assim a simulação de sua evolução por Monte Carlo, como conseqüência da independência destes fatores. A estrutura de volatilidade foi construída de maneira a ser totalmente não paramétrica baseada em vértices sintéticos que foram obtidos por interpolação dos dados históricos de cotações do DI Futuro negociado na BM&FBOVESPA, sendo o período analisado entre 02/01/2003 a 28/12/2012. Para possibilitar esta abordagem foi introduzida uma modificação no modelo HJM desenvolvida por Brace e Musiela (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large and sustained differences in economic performance across regions of developing countries have long provided motivation for fiscal incentives designed to encourage firm entry in lagging areas. Empirical evidence in support of these policies has, however, been weak at best. This paper undertakes a direct evaluation of the most prominent fiscal incentive policy in Brazil, the Fundos Constitucionais de Financiamento (Constitutional Funds). In doing so, we exploit valuable features of the Brazilian Ministry of Labor's RAIS data set to address two important elements of firm location decisions that have the potential to bias an assessment of the Funds: (i) firm “family structure” (in particular, proximity to headquarters for vertically integrated firms), and (ii) unobserved spatial heterogeneity (with the potential to confound the effects of the Funds). We find that the pull of firm headquarters is very strong relative to the Constitutional Funds for vertically integrated firms, but that, with non-parametric controls for time invariant spatial heterogeneity, the Funds provide statistically and economically significant incentives for firms in many of the targeted industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life cycle general equilibrium models with heterogeneous agents have a very hard time reproducing the American wealth distribution. A common assumption made in this literature is that all young adults enter the economy with no initial assets. In this article, we relax this assumption – not supported by the data - and evaluate the ability of an otherwise standard life cycle model to account for the U.S. wealth inequality. The new feature of the model is that agents enter the economy with assets drawn from an initial distribution of assets, which is estimated using a non-parametric method applied to data from the Survey of Consumer Finances. We found that heterogeneity with respect to initial wealth is key for this class of models to replicate the data. According to our results, American inequality can be explained almost entirely by the fact that some individuals are lucky enough to be born into wealth, while others are born with few or no assets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é verificar se os fundos de investimento Multimercado no Brasil geram alphas significativamente positivos, ou seja, se os gestores possuem habilidade e contribuem positivamente para o retorno de seus fundos. Para calcular o alpha dos fundos, foi utilizado um modelo com sete fatores, baseado, principalmente, em Edwards e Caglayan (2001), com a inclusão do fator de iliquidez de uma ação. O período analisado vai de 2003 a 2013. Encontramos que, em média, os fundos multimercado geram alpha negativo. Porém, apesar de o percentual dos que geram interceptos positivos ser baixo, a magnitude dos mesmos é expressiva. Os resultados diferem bastante por classificação Anbima e por base de dados utilizada. Verifica-se também se a performance desses fundos é persistente através de um modelo não-paramétrico baseado em tabelas de contingência. Não encontramos evidências de persistência, nem quando separamos os fundos por classificação.