22 resultados para 519 Probalidades y matemática aplicada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EMAp - Escola de Matemática Aplicada

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apresentamos um projeto inovador na intersecção da tecnologia da informação, gestão, e direito, com o intuito de oferecer otimização de resultados, redução de custos e de tempo. A equipe proponente foi formada no projeto Big Data e Gestão Processual, do qual participam três escolas da Fundação Getulio Vargas que são referência em todo Brasil: as escolas de Direito, de Administração de Empresas e de Matemática Aplicada, todas do Rio de Janeiro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (in nite dimensional) problem and approximating problems working with projections from di erent subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.