5 resultados para wavelet entropy
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.
Resumo:
o exame para o diagnóstico de doenças da laringe é usualmente realizado através da videolaringoscopia e videoestroboscopia. A maioria das doenças na laringe provoca mudanças na voz do paciente. Diversos índices têm sido propostos para avaliar quantitativamente a qualidade da voz. Também foram propostos vários métodos para classificação automática de patologias da laringe utilizando apenas a voz do paciente. Este trabalho apresenta a aplicação da Transformada Wavelet Packet e do algoritmo Best Basis [COI92] para a classificação automática de vozes em patológicas ou normais. Os resultados obtidos mostraram que é possível classificar a voz utilizando esta Transformada. Tem-se como principal conclusão que um classificador linear pode ser obtido ao se empregar a Transformada Wavelet Packet como extrator de características. O classificador é linear baseado na existência ou não de nós na decomposição da Transformada Wavelet Packet. A função Wavelet que apresentou os melhores resultados foi a sym1et5 e a melhor função custo foi a entropia. Este classificador linear separa vozes normais de vozes patológicas com um erro de classificação de 23,07% para falsos positivos e de 14,58%para falsos negativos.
Resumo:
A análise do sono está baseada na polissonogra a e o sinal de EEG é o mais importante. A necessidade de desenvolver uma análise automática do sono tem dois objetivos básicos: reduzir o tempo gasto na análise visual e explorar novas medidas quantitativas e suas relações com certos tipos de distúrbios do sono. A estrutura do sinal de EEG de sono está relacionada com a chamada microestrutura do sono, que é composta por grafoelementos. Um destes grafoelementos é o fuso de sono (spindles). Foi utilizado um delineamento transversal aplicado a um grupo de indivíduos normais do sexo masculino para testar o desempenho de um conjunto de ferramentas para a detecção automática de fusos. Exploramos a detecção destes fusos de sono através de procura direta, Matching Pursuit e uma rede neural que utiliza como "input"a transformada de Gabor (GT). Em comparação com a análise visual, o método utilizando a transformada de Gabor e redes neurais apresentou uma sensibilidade de 77% e especi cidade de 73%. Já o Matching Pursuit, apesar de mais demorado, se mostrou mais e ciente, apresentando sensibilidade de 81,2% e especi cidade de 85.2%.
Resumo:
O processamento de imagens tem sido amplamente utilizado para duas tarefas. Uma delas é o realce de imagens para a posterior visualização e a outra tarefa é a extração de informações para análise de imagens. Este trabalho apresenta um estudo sobre duas teorias multi-escalas chamadas de espaço de escala e transformada wavelet, que são utilizadas para a extração de informações de imagens. Um dos aspectos do espaço de escalas que tem sido amplamente discutido por diversos autores é a sua base (originalmente a gaussiana). Tem se buscado saber se a base gaussiana é a melhor, ou para quais casos ela é a melhor. Além disto, os autores têm procurado desenvolver novas bases, com características diferentes das pertencentes à gaussiana. De posse destas novas bases, pode-se compará-las com a base gaussiana e verificar onde cada base apresenta melhor desempenho. Neste trabalho, foi usada (i) a teoria do espaço de escalas, (ii) a teoria da transformada wavelet e (iii) as relações entre elas, a fim de gerar um método para criar novas bases para o espaço de escalas a partir de funções wavelets. O espaço de escala é um caso particular da transformada wavelet quando se usam as derivadas da gaussiana para gerar os operadores do espaço de escala. É com base nesta característica que se propôs o novo método apresentado. Além disto, o método proposto usa a resposta em freqüência das funções analisadas. As funções bases do espaço de escala possuem resposta em freqüência do tipo passa baixas. As funções wavelets, por sua vez, possuem resposta do tipo passa faixas Para obter as funções bases a partir das wavelets faz-se a integração numérica destas funções até que sua resposta em freqüência seja do tipo passa baixas. Algumas das funções wavelets estudadas não possuem definição para o caso bi-dimensional, por isso foram estudadas três formas de gerar funções bi-dimensionais a partir de funções unidimensionais. Com o uso deste método foi possível gerar dez novas bases para o espaço de escala. Algumas dessas novas bases apresentaram comportamento semelhante ao apresentado pela base gaussiana, outras não. Para as funções que não apresentaram o comportamento esperado, quando usadas com as definições originais dos operadores do espaço de escala, foram propostas novas definições para tais operadores (detectores de borda e bolha). Também foram geradas duas aplicações com o espaço de escala, sendo elas um algoritmo para a segmentação de cavidades cardíacas e um algoritmo para segmentação e contagem de células sanguíneas.
Resumo:
Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.