2 resultados para semiparametric adaptive Gaussian Markov random field model
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.
Resumo:
Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes.