2 resultados para presumption of fault
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
A área de Detecção de Intrusão, apesar de muito pesquisada, não responde a alguns problemas reais como níveis de ataques, dim ensão e complexidade de redes, tolerância a falhas, autenticação e privacidade, interoperabilidade e padronização. Uma pesquisa no Instituto de Informática da UFRGS, mais especificamente no Grupo de Segurança (GSEG), visa desenvolver um Sistema de Detecção de Intrusão Distribuído e com características de tolerância a falhas. Este projeto, denominado Asgaard, é a idealização de um sistema cujo objetivo não se restringe apenas a ser mais uma ferramenta de Detecção de Intrusão, mas uma plataforma que possibilite agregar novos módulos e técnicas, sendo um avanço em relação a outros Sistemas de Detecção atualmente em desenvolvimento. Um tópico ainda não abordado neste projeto seria a detecção de sniffers na rede, vindo a ser uma forma de prevenir que um ataque prossiga em outras estações ou redes interconectadas, desde que um intruso normalmente instala um sniffer após um ataque bem sucedido. Este trabalho discute as técnicas de detecção de sniffers, seus cenários, bem como avalia o uso destas técnicas em uma rede local. As técnicas conhecidas são testadas em um ambiente com diferentes sistemas operacionais, como linux e windows, mapeando os resultados sobre a eficiência das mesmas em condições diversas.
Resumo:
This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.