3 resultados para polinômio ortogonal de Legendre
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
o presente trabalho aborda a aplicação do método dos elementos de contorno (MEC) para solução de problemas de flexão linear e geometricamente não-linear de placas semiespessas. Os modelos de placa empregados consideraram a influência do cisalhamento através de teorias de primeira ordem, especificamente as de Mindlin e Reissner. Uma formulação integral unificada dos modelos de placa utilizados é desenvolvida para o operador de Navier do problema, onde foram mantidos alguns termos de ordem superior no tensor deformação de Green. A formulação integral do problema de membrana acoplado ao de flexão é igualment desenvolvida, levando a um sistema de equações integrais não-lineares que descreve completamente problemas de placas que envolvem grandes deslocamentos. Estas equações podem ser particularizadas para problemas de flexão linear e estabilidade elástica. Tendo em vista a necessidade de se considerar derivadas dos deslocamentos translacionais, as equações integrais correspondentes ao gradiente dos deslocamentos também foram deduzidas, caracterizando uma formulação hipersingular. o método empregado para solução numérica do sistema de equações integrais foi o método direto dos elementos de contorno. Um tratamento das integrais fortemente singulares presentes nas equações foi realizado, baseado em expansões assint6ticas dos núcleos. Deste procedimento resulta uma abordagem regularizada que emprega apenas quadraturas padrão de Gauss-Legendre.
Resumo:
Nesse trabalho apresentamos algoritmos adaptativos do M´etodo do Res´ıduo M´ınimo Generalizado (GMRES) [Saad e Schultz, 1986], um m´etodo iterativo para resolver sistemas de equa¸c˜oes lineares com matrizes n˜ao sim´etricas e esparsas, o qual baseia-se nos m´etodos de proje¸c˜ao ortogonal sobre um subespa¸co de Krylov. O GMRES apresenta uma vers˜ao reinicializada, denotada por GMRES(m), tamb´em proposta por [Saad e Schultz, 1986], com o intuito de permitir a utiliza¸c˜ao do m´etodo para resolver grandes sistemas de n equa¸c˜oes, sendo n a dimens˜ao da matriz dos coeficientes do sistema, j´a que a vers˜ao n˜ao-reinicializada (“Full-GMRES”) apresenta um gasto de mem´oria proporcional a n2 e de n´umero de opera¸c˜oes de ponto-flutuante proporcional a n3, no pior caso. No entanto, escolher um valor apropriado para m ´e dif´ıcil, sendo m a dimens˜ao da base do subespa¸co de Krylov, visto que dependendo do valor do m podemos obter a estagna¸c˜ao ou uma r´apida convergˆencia. Dessa forma, nesse trabalho, acrescentamos ao GMRES(m) e algumas de suas variantes um crit´erio que tem por objetivo escolher, adequadamente, a dimens˜ao, m da base do subespa¸co de Krylov para o problema o qual deseja-se resolver, visando assim uma mais r´apida, e poss´ıvel, convergˆencia. Aproximadamente duas centenas de experimentos foram realizados utilizando as matrizes da Cole¸c˜ao Harwell-Boeing [MCSD/ITL/NIST, 2003], que foram utilizados para mostrar o comportamento dos algoritmos adaptativos. Foram obtidos resultados muito bons; isso poder´a ser constatado atrav´es da an´alise das tabelas e tamb´em da observa ¸c˜ao dos gr´aficos expostos ao longo desse trabalho.
Resumo:
A presente dissertação trata da fatoração de polinômios em duas variáveis sobre um corpo F. Mais precisamente, o trabalho traça o desenvolvimento histórico de uma estratégia modular que levou à resolução desse problema em tempo polinomial e culmina com a apresentação de um algoritmo publicado por S. Gao no ano de 2003, que determina simultaneamente as fatorações racional e absoluta de um dado polinômio. A nossa contribuição consiste na extensão desse algoritmo a casos que não satisfazem as condições prescritas pelo autor.