7 resultados para otimização não-linear
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.
Resumo:
Este trabalho apresenta novos resultados matemáticos sobre a positividade local de funções escalares multivariáveis. Estes resultados são usados para resolver de forma quantitativa o problema de controle +¥ não-linear. Por solução quantitativa, entende-se uma solução (uma lei de controle) associada a uma região de validade. A região de validade é a região do espaço de estados onde os requerimentos de estabilidade e desempenho são satisfeitos. Para resolver o problema de forma eficiente, foi desenvolvido um procedimento que visa maximizar a região de validade do controlador enquanto garante um desempenho mínimo. A solução deste problema de otimização é estudada e alternativas para sua simplificação são apresentadas. Uma aplicação experimental a um sistema de controle de pH é apresentada. A utilidade dos resultados teóricos desenvolvidos na teoria de estabilidade de Lyapunov também é estudada.
Resumo:
Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.
Resumo:
Este trabalho é uma contribuição para o conhecimento de metodologias de projeto de estruturas de material composto, aplicando métodos de otimização estrutural a cascas laminadas e apresentando uma estratégia em dois níveis. No primeiro nível é realizada a minimização da flexibilidade da estrutura, tendo como variável de projeto a orientação de cada lâmina da estrutura. Utiliza-se Programação Linear Seqüencial (SLP) e direção de tensão principal para otimização da orientação. No segundo nível minimiza-se o volume de cada lâmina, usando a flexibilidade total da estrutura como restrição e a densidade relativa como variável de projeto, também através de SLP. Para evitar aparecimento de áreas com densidades intermediárias, utiliza-se um Método de Continuação, dividindo o nível de otimização topológica em duas ou mais etapas. As formulações desenvolvidas permitem a solução de problemas com múltiplos casos de carregamento. Para a solução da equação de equilíbrio de casca laminada, utiliza-se um elemento finito de casca degenerado de oito nós com integração explícita na direção da espessura. A implementação desse elemento é feita de modo a facilitar a obtenção das derivadas da matriz de rigidez, necessárias na linearização das funções objetivo e restrições. Evita-se assim o uso de derivadas numéricas. Resultados para vários tipos de estrutura são apresentados, incluindo comparações entre diferentes carregamentos, condições de contorno, número de lâminas, espessuras, etc. As soluções obtidas, formas de análise e possíveis aplicações são discutidas.
Resumo:
Este trabalho trata dos problemas de otimização de minimização de volume com restrição de flexibilidade e freqüência natural e minimização de flexibilidade com restrição de volume. Os problemas são resolvidos para estruturas bidimensionais e tridimensionais. As equações diferenciais de equilíbrio são solucionadas de forma aproximada através do método dos elementos finitos, em um subespaço de dimensão finita. O método utilizado no estudo é o da otimização topológica, o qual consiste em encontrar dentro de um domínio pré-existente uma distribuição ideal de material. São avaliadas técnicas como programação linear e critério de ótimo. Em ambos os casos são utilizadas sensibilidades calculadas analiticamente. Para a otimização com restrição modal, problemas característicos como autovalores repetidos e normalização do autovetor são tratados. Ferramentas usadas na otimização topológica, como método da continuação, penalização e filtragem são discutidos. São abordados também problemas e características inerentes ao processo de otimização topológica, tais como instabilidades de tabuleiros, dependência de malha e sensibilidade da topologia a diferentes condições de contorno. Os resultados obtidos permitem avaliações referentes à otimização topológica (geometrias, ou seja, topologias resultantes) sob diferentes condições, utilizando-se as ferramentas discutidas nesse trabalho.
Resumo:
Neste trabalho é discutido o impacto causado pelos parâmetros de processo com comportamento estocástico em um modelo de otimização, aplicado ao planejamento mineiro. Com base em um estudo de caso real, construiu-se um modelo matemático representando o processo produtivo associado à mineração, beneficiamento e comercialização de carvão mineral. Este modelo foi otimizado com a técnica de programação linear, sendo a solução ótima perturbada pelo comportamento estocástico de um dos principais parâmetros envolvidos no processo produtivo. A análise dos resultados permitiu avaliar o risco associado à decisão ótima, sendo com isto proposta uma metodologia para avaliação do risco operacional.
Resumo:
Este trabalho aborda o projeto otimizado de transdutores eletro-mecânicos baseados no fenô- meno da piezeletricidade e submetidos a não-linearidade geométrica. Para este m, é proposta uma formulação de equilíbrio para descrever o movimento nito de um corpo piezelétrico e a sua discretização por meio do método dos Elementos Finitos. Problemas de equilíbrio com pontos limites podem ser corretamente simulados com a abordagem de solução proposta, pois questões como a imposição de comprimento de arco em problemas acoplados são discutidas. Diferentes métodos de controle de arco são discutidos e é proposta a consideração do método dos Deslocamentos Generalizados como um tipo de controle de comprimento de arco da família das restrições ortogonais. A formulação de otimização proposta consiste na maximização de componentes do vetor de estado de alguns pontos da estrutura (portas de saída) com restrição de volume e valores de algumas posições do vetor de estado. A análise de sensibilidade proposta, baseada na abordagem adjunta, é su cientemente geral para permitir o projeto de atuadores e sensores e permite a aplicação de condições de contorno essenciais não-homogêneas, como é o caso da diferença de potencial. O método das Assíntotas Móveis Generalizadas (GMMA) é utilizado conjuntamente com a tradicional Programação Linear Sequencial (SLP) para a solução do problema de otimização e suas implementações são discutidas em detalhes. Resultados mostrando a in uência da não-linearidade geométrica e/ou rigidez externa nãolinear no projeto de transdutores piezelétricos são apresentados e discutidos.