2 resultados para métodos de decomposição
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
Fenômenos naturais, tecnológicos e industriais podem, em geral, ser modelados de modo acurado através de equações diferenciais parciais, definidas sobre domínios contínuos que necessitam ser discretizados para serem resolvidos. Dependendo do esquema de discretização utilizado, pode-se gerar sistemas de equações lineares. Esses sistemas são, de modo geral, esparsos e de grande porte, onde as incógnitas podem ser da ordem de milhares, ou até mesmo de milhões. Levando em consideração essas características, o emprego de métodos iterativos é o mais apropriado para a resolução dos sistemas gerados, devido principalmente a sua potencialidade quanto à otimização de armazenamento e eficiência computacional. Uma forma de incrementar o desempenho dos métodos iterativos é empregar uma técnica multigrid. Multigrid são uma classe de métodos que resolvem eficientemente um grande conjunto de equações algébricas através da aceleração da convergência de métodos iterativos. Considerando que a resolução de sistemas de equações de problemas realísticos pode requerer grande capacidade de processamento e de armazenamento, torna-se imprescindível o uso de ambientes computacionais de alto desempenho. Uma das abordagens encontradas na literatura técnica para a resolução de sistemas de equações em paralelo é aquela que emprega métodos de decomposição de domínio (MDDs). Os MDDs são baseados no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções obtidas em cada um dos subdomínios Assim, neste trabalho são disponibilizados diferentes métodos de resolução paralela baseado em decomposição de domínio, utilizando técnicas multigrid para a aceleração da solução de sistemas de equações lineares. Para cada método, são apresentados dois estudos de caso visando a validação das implementações. Os estudos de caso abordados são o problema da difusão de calor e o modelo de hidrodinâmica do modelo UnHIDRA. Os métodos implementados mostraram-se altamente paralelizáveis, apresentando bons ganhos de desempenho. Os métodos multigrid mostraram-se eficiente na aceleração dos métodos iterativos, já que métodos que utilizaram esta técnica apresentaram desempenho superior aos métodos que não utilizaram nenhum método de aceleração.