4 resultados para desnaturação
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
A HSP27 é um membro da família das proteínas de choque térmico que protege as células contra diversos tipo de estresse, sendo expressa principalmente em astrócitos depois da isquemia. Neste trabalho, nós estudamos o papel da HSP27 na tolerância à isquemia cerebral, usando um modelo in vivo e culturas organotípicas. Foram estudados diferentes tempos de reperfusão in vivo (1, 4, 7, 14, 21, 30 dias) usando 2 min, 10 min ou 2+10 min de isquemia global transitória pela oclusão dos 4 vasos (4VO). Foi observado um aumento no imunoconteúdo no DG depois de todos os tratamentos, com uma diminuição na porcentagem de HSP27 fosforilada. Em CA1, região vulnerável, observou-se um aumento no imunoconteúdo depois de 10 ou 2+10 min de isquemia; em 10 min o aumento de fosforilação foi paralelo ao imunoconteúdo, enquanto com 2+10min de isquemia, quando a região CA1 se tornou resistente, houve uma diminuição na porcentagem de HSP27 fosforilada. Os resultados sugerem que a HSP27 pode estar atuando como chaperona, protegendo outras proteínas da desnaturação nos astrócitos, os quais podem auxiliar os neurônios a sobreviverem por manter a homeostase do tecido. Em culturas organotípicas, foram usados 5 ou 10 min de privação de glicose e oxigênio (OGD) ou 1µM de NMDA para induzir tolerância ao tempo letal, 40 min, de privação de glicose e oxigênio (OGD). Nesse caso, foi observado um aumento no imunoconteúdo de HSP27 depois de todos os tratamentos, mas a porcentagem de HSP27 fosforilada se manteve constante ou aumentou quando o pré-condicionamento ocorreu. A HSP27 pode estar modulando os filamentos de actina ou bloqueando o processo apoptótico, facilitando a sobrevivência das células. Em conjunto, os resultados sugerem que o mecanismo que leva à morte de células pode ser diferente nos dois modelos, exigindo atuações distintas da proteína.
Resumo:
A enzima estudada no presente trabalho é delta-aminulevulinato dehidratase (δ-ALA D), uma enzima sufidrílica, cuja atividade pode ser inibida por uma variedade de agentes bloqueadores de grupos tiólicos . A reação catalisada pela δ-ALA D (formação do composto monopirrólico porfobilinogênio) faz parte da rota de síntese de compostos tetrapirrólicos como o grupamento heme, consequentemente a inibição desta enzima implica em alterações patológicas decorrentes da inibição da rota de biossíntese do heme e ainda resultar no acúmulo do substrato ALA, o qual pode ter atividade pró oxidante por estar envolvido na produção de espécies ativas de oxigênio. Avaliou-se a susceptibilidade da δ-ALA D de fígado de peixe e rato frente a inibição por selênio orgânico e inorgânico. Os resultados demostraram claramente que a enzima δ-ALA D de peixes e mamíferos é susceptível a inibição “in vitro” por compostos orgânicos e inorgânicos de selênio. A análise comparativa demostrou que a enzima δ-ALA D de peixes é mais resistente a inibição por selênio em relação a de mamíferos. Todavia não foi possível esclarecer as causas deste diferente comportamento. Os resultados demostraram que o sistema de hidroxilação previamente descrito em ratos que acelera cataliticamente a oxidação de DTT na presença de disselenetos também ocorre em tecidos de peixe. Neste sistema estão envolvidos fatores enzimaticos, uma vez que este efeito foi anulado pela desnaturação térmica do sobrenadante. O presente trabalho mostra que a enzima δ-ALA D de peixes e ratos é sensível a inibição; in vitro, por composto de selênio orgânico e inorgânico. A manutenção dos grupos SH do sítio ativo da enzima no estado reduzido é essencial para a ação catalítica da δ-ALA D. A inibição da δ-ALA D causada por selênio orgânico ( (PhSe2) e (BuSe2)) e selênio inorgânico (selenito de sódio) é prevenida por DTT. Estes resultados indicam que o selenio orgânico e inorgânico inibe a δ-ALA D por oxidação de grupos tióis essenciais da enzima. A inibição desta enzima e conseqüentes alterações na rota de síntese de tetrapirróis podem ser responsáveis pelos efeitos tóxicos de selenetos orgânicos e inorgânicos em peixes e outros animais. Em peixes os efeitos toxicos mais relatados referem-se a deficiências reprodutivas, principalmente na redução da sobrevivência larval. Coincidentemente os ovários são o local de maior acumulação de selênio nos tecido de peixe e o desenvolvimento larval exige intensa atividade da enzima δ-ALA D.
Resumo:
A pitiose é uma doença granulomatosa, tendo como agente etiológico Pythium insidiosum De Cock, 1987, que atinge eqüinos, provocando quadro infeccioso na pele e tecido subcutâneo , caninos com apresentação gastrintestinal e cutânea , bovinos com doença cutânea , felinos e humanos, com quadro clinico de arterite, queratite e celulite periorbital. Esta enfermidade é mais prevalente em áreas tropicais, subtropicais ou temperadas. Também animais silvestres podem se infectar pela doença. O gênero Pythium pertence ao Reino Stramenopila, Filo Oomycota, cujos membros caracterizam-se por produção de zoósporos biflagelados durante a reprodução assexuada. O desenvolvimento de pitiose experimental nas espécies naturalmente infectadas não foi ainda relatado, mas os coelhos são sensíveis à inoculação de zoósporos e podem ser usados como modelo experimental para estudo da pitiose. Este trabalho teve como objetivo avaliar a eficiência de 3 processos de produção de imunoterápicos contra pitiose, produzidos a partir do cultivo e posterior maceração ou sonicação, em coelhos infectados experimentalmente com 17.500 zoósporos do oomiceto Pythium insidiosum (cepa CBS 101555). Todos os coelhos foram inoculados com zoósporos 1 mês antes da aplicação dos imunoterápicos. Para avaliação dos imunoterápicos, os coelhos que desenvolveram lesões foram divididos em 4 grupos de 5 animais: Grupo 1 – Tratado com placebo; grupo 2 – tratado com o imunoterápico sonicado; grupo 3 – tratado com o imunoterápico misto e o grupo 4 - Imunoterápico macerado mecanicamente. Todos os animais receberam 8 doses do imonoterápico ou placebo com intervalos de 14 dias. Um mês após a inoculação dos zoósporos móveis, foram iniciadas as medições das áreas inoculadas. Os resultados indicaram que o imunoterápico macerado, utilizado no grupo 4, foi estatisticamente (P<0.001) mais eficiente que os demais, diminuindo em até 71,8% a área dos nódulos provocados pelo Pythium insidiosum, após 26 semanas de avaliação. Neste período 2 coelhos deste grupo foram curados. Os animais do Grupo 2 que receberam o imunoterápico sonicado, não mostraram nenhuma reação, detectando-se aumento de até 221% no tamanho das lesões. Nos coelhos do grupo 3, imunoterápico misto, houve aumento das lesões em 50%. A provável causa deste insucesso com o grupo 2, está na desnaturação dos antígenos protetores através dos processos de sonicação. Os dados gerados nesta tese podem inferir que, futuramente, novas perspectivas se abrem para o estudo da pitiose e seu controle.
Resumo:
A Tuberculose (TB) é a principal causa de óbitos entre as doenças infecciosas causadas por um único agente. De acordo com a Organização Mundial da Saúde (OMS) o agente etiológico da TB no homem, o complexo Mycobacterium (M. tuberculosis, M. africanum, M. bovis) é responsável por cerca de 8 milhões de novas infecções e 3 milhões de mortes a cada ano no mundo. No começo da década de 80, a reemergência da TB em países em desenvolvimento deve-se à crescente incidência do Vírus da Imunodeficiência Humana (HIV), à falta de recursos para o tratamento desta doença e à proliferação de cepas resistentes a múltiplas drogas (MDR-TB). Esta situação criou a necessidade da busca por novos agentes antimicobacterianos capazes de reduzir o tempo de tratamento, melhorar a adesão dos pacientes ao mesmo e ser efetiva contra cepas MDR-TB. A via do chiquimato leva à biossíntese do corismato, o precursor de aminoácidos aromáticos, tirosina, triptofano e fenilalanina. A primeira reação na biossíntese de fenilalanina envolve a conversão de corismato a prefenato, catalisada pela corismato mutase. A segunda reação na biossíntese de fenilalanina é a descarboxilação e desidratação de prefenato a fenilpiruvato, catalisada pela prefenato desidratase. Embora ausente em mamíferos, esta via está presente em bactérias, algas, fungos, plantas e parasitos do Phyllum Apicomplexa. Esta rota é essencial em M. tuberculosis e, portanto, suas enzimas representam alvos potenciais para o desenvolvimento de novas drogas antimicobacterianas. O objetivo deste trabalho foi estudar o gene pheA da linhagem de M. tuberculosis H37Rv e seu produto, a enzima prefenato desidratase Para isso, DNA genômico de M. tuberculosis H37RV foi extraído e o gene pheA foi amplificado pela técnica de PCR, clonado no vetor de expressão pET-23a(+), seqüenciado e superexpresso em células de Escherichia coli BL21(DE3). Os resultados obtidos confirmaram a região predita para o gene pheA, que foi amplificado com sucesso, mostrando 963 pb, sendo que a presença de 10% dimetil sulfoxido (DMSO) mostrou ser essencial para permitir a desnaturação do DNA rico em bases G-C. Análise da seqüência nucleotídica pelo método de Sanger confirmou a identidade do gene clonado e demonstrou que nenhuma mutação foi introduzida pelos passos de PCR e clonagem. A enzima prefenato desidratase foi superexpressa em células de E. coli BL21(DE3) eletroporadas com pET-23a(+)::pheA. Análise por SDS-PAGE mostrou expressão significativa de uma proteína com aproximadamente 33kDa, estando de acordo com a massa molecular esperada para a prefenato desidratase. A proteína recombinante foi superexpressa sem a adição de IPTG, e a presença da proteína pôde ser detectada em todos os intervalos de tempo testados (6, 9 e 24 horas depois da OD600nm alcançar o valor de 0,5). Foi realizado ensaio enzimático com a prefenato desidratase de acordo com Gething et al. (1976) utilizando prefenato de bário como substrato e coeficiente de extinção molar de 17.500 a 320 nm para calcular a concentração de fenilpiruvato. Houve um aumento de 1766 vezes na atividade específica da prefenato desidratase no extrato bruto da proteína recombinante em relação ao controle, no qual o vetor pET23a(+) sem o gene pheA foi introduzido em células de E. coli BL21(DE3).