2 resultados para TRACE AMOUNT
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Este trabalho propõe a utilização da arquitetura Trace como um sistema de detecção de intrusão. A arquitetura Trace oferece suporte ao gerenciamento de protocolos de alto nível, serviços e aplicações através de uma abordagem baseada na observação passiva de interações de protocolos (traços) no tráfego de rede. Para descrever os cenários a serem monitorados, é utilizada uma linguagem baseada em máquinas de estado. Esta linguagem permite caracterizar aspectos observáveis do tráfego capturado com vistas a sua associação com formas de ataque. O trabalho mostra, através de exemplos, que esta linguagem é adequada para a modelagem de assinaturas de ataques e propõe extensões para permitir a especificação de um número maior de cenários ligados ao gerenciamento de segurançaa. Em seguida, é descrita a implementação do agente de monitoração, componente-chave da arquitetura Trace, e sua utilização para detectar intrusões. Esse agente (a) captura o tráfego da rede, (b) observa a ocorrência dos traços programados e (c) armazena estatísticas sobre a sua ocorrência em uma base de informações de gerenciamento (MIB { Management Information Base). O uso de SNMP permite a recuperação destas informações relativas µa ocorrências dos ataques. A solução apresentada mostrou ser apropriada para resolver duas classes de problemas dos sistemas de detecção de intrusão: o excesso de falsos positivos e a dificuldade em se modelar certos ataques.
Resumo:
In this thesis, we present a novel approach to combine both reuse and prediction of dynamic sequences of instructions called Reuse through Speculation on Traces (RST). Our technique allows the dynamic identification of instruction traces that are redundant or predictable, and the reuse (speculative or not) of these traces. RST addresses the issue, present on Dynamic Trace Memoization (DTM), of traces not being reused because some of their inputs are not ready for the reuse test. These traces were measured to be 69% of all reusable traces in previous studies. One of the main advantages of RST over just combining a value prediction technique with an unrelated reuse technique is that RST does not require extra tables to store the values to be predicted. Applying reuse and value prediction in unrelated mechanisms but at the same time may require a prohibitive amount of storage in tables. In RST, the values are already stored in the Trace Memoization Table, and there is no extra cost in reading them if compared with a non-speculative trace reuse technique. . The input context of each trace (the input values of all instructions in the trace) already stores the values for the reuse test, which may also be used for prediction. Our main contributions include: (i) a speculative trace reuse framework that can be adapted to different processor architectures; (ii) specification of the modifications in a superscalar, superpipelined processor in order to implement our mechanism; (iii) study of implementation issues related to this architecture; (iv) study of the performance limits of our technique; (v) a performance study of a realistic, constrained implementation of RST; and (vi) simulation tools that can be used in other studies which represent a superscalar, superpipelined processor in detail. In a constrained architecture with realistic confidence, our RST technique is able to achieve average speedups (harmonic means) of 1.29 over the baseline architecture without reuse and 1.09 over a non-speculative trace reuse technique (DTM).