2 resultados para Spatial Variability
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes.
Resumo:
Dois experimentos e um levantamento por amostragem foram analisados no contexto de dados espaciais. Os experimentos foram delineados em blocos completos casualizados sendo que no experimento um (EXP 1) foram avaliados oito cultivares de trevo branco, sendo estudadas as variáveis Matéria Seca Total (MST) e Matéria Seca de Gramíneas (MSGRAM) e no experimento dois (EXP 2) 20 cultivares de espécies forrageiras, onde foi estudada a variável Percentagem de Implantação (%IMPL). As variáveis foram analisadas no contexto de modelos mistos, sendo modelada a variabilidade espacial através de semivariogramas exponencias, esféricos e gaussianos. Verificou-se uma diminuição em média de 19% e 14% do Coeficiente de Variação (CV) das medias dos cultivares, e uma diminuição em média de 24,6% e 33,3% nos erros padrões dos contrastes ortogonais propostos em MST e MSGRAM. No levantamento por amostragem, estudou-se a associação espacial em Aristida laevis (Nees) Kunth , Paspalum notatum Fl e Demodium incanum DC, amostrados em uma transecção fixa de quadros contiguos, a quatro tamanhos de unidades amostrais (0,1x0,1m; 0,1x0,3m; 0,1x0,5m; e 0,1x1,0m). Nas espécies Aristida laevis (Nees) Kunth e Paspalum notatum Fl, existiu um bom ajuste dos semivariogramas a tamanhos menores das unidades amostrais, diminuíndo quando a unidade amostral foi maior. Desmodium incanum DC apresentou comportamento contrario, ajustando melhor os semivariogramas a tamanhos maiores das unidades amostrais.