3 resultados para Spatial Data mining

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo de caso de mineração de dados no varejo. O negócio em questão é a comercialização de móveis e materiais de construção. A mineração foi realizada sobre informações geradas das transações de vendas por um período de 8 meses. Informações cadastrais de clientes também foram usadas e cruzadas com informações de venda, visando obter resultados que possam ser convertidos em ações que, por conseqüência, gerem lucro para a empresa. Toda a modelagem, preparação e transformação dos dados, foi feita visando facilitar a aplicação das técnicas de mineração que as ferramentas de mineração de dados proporcionam para a descoberta de conhecimento. O processo foi detalhado para uma melhor compreensão dos resultados obtidos. A metodologia CRISP usada no trabalho também é discutida, levando-se em conta as dificuldades e facilidades que se apresentaram durante as fases do processo de obtenção dos resultados. Também são analisados os pontos positivos e negativos das ferramentas de mineração utilizadas, o IBM Intelligent Miner e o WEKA - Waikato Environment for Knowledge Analysis, bem como de todos os outros softwares necessários para a realização do trabalho. Ao final, os resultados obtidos são apresentados e discutidos, sendo também apresentada a opinião dos proprietários da empresa sobre tais resultados e qual valor cada um deles poderá agregar ao negócio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cada vez mais o tempo acaba sendo o diferencial de uma empresa para outra. As empresas, para serem bem sucedidas, precisam da informação certa, no momento certo e para as pessoas certas. Os dados outrora considerados importantes para a sobrevivência das empresas hoje precisam estar em formato de informações para serem utilizados. Essa é a função das ferramentas de “Business Intelligence”, cuja finalidade é modelar os dados para obter informações, de forma que diferencie as ações das empresas e essas consigam ser mais promissoras que as demais. “Business Intelligence” é um processo de coleta, análise e distribuição de dados para melhorar a decisão de negócios, que leva a informação a um número bem maior de usuários dentro da corporação. Existem vários tipos de ferramentas que se propõe a essa finalidade. Esse trabalho tem como objetivo comparar ferramentas através do estudo das técnicas de modelagem dimensional, fundamentais nos projetos de estruturas informacionais, suporte a “Data Warehouses”, “Data Marts”, “Data Mining” e outros, bem como o mercado, suas vantagens e desvantagens e a arquitetura tecnológica utilizada por estes produtos. Assim sendo, foram selecionados os conjuntos de ferramentas de “Business Intelligence” das empresas Microsoft Corporation e Oracle Corporation, visto as suas magnitudes no mundo da informática.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dois experimentos e um levantamento por amostragem foram analisados no contexto de dados espaciais. Os experimentos foram delineados em blocos completos casualizados sendo que no experimento um (EXP 1) foram avaliados oito cultivares de trevo branco, sendo estudadas as variáveis Matéria Seca Total (MST) e Matéria Seca de Gramíneas (MSGRAM) e no experimento dois (EXP 2) 20 cultivares de espécies forrageiras, onde foi estudada a variável Percentagem de Implantação (%IMPL). As variáveis foram analisadas no contexto de modelos mistos, sendo modelada a variabilidade espacial através de semivariogramas exponencias, esféricos e gaussianos. Verificou-se uma diminuição em média de 19% e 14% do Coeficiente de Variação (CV) das medias dos cultivares, e uma diminuição em média de 24,6% e 33,3% nos erros padrões dos contrastes ortogonais propostos em MST e MSGRAM. No levantamento por amostragem, estudou-se a associação espacial em Aristida laevis (Nees) Kunth , Paspalum notatum Fl e Demodium incanum DC, amostrados em uma transecção fixa de quadros contiguos, a quatro tamanhos de unidades amostrais (0,1x0,1m; 0,1x0,3m; 0,1x0,5m; e 0,1x1,0m). Nas espécies Aristida laevis (Nees) Kunth e Paspalum notatum Fl, existiu um bom ajuste dos semivariogramas a tamanhos menores das unidades amostrais, diminuíndo quando a unidade amostral foi maior. Desmodium incanum DC apresentou comportamento contrario, ajustando melhor os semivariogramas a tamanhos maiores das unidades amostrais.