5 resultados para Si (100) substrates
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
O presente trabalho tem como objetivo a eletrodeposição de cobalto, metal que apresenta caráter magnético, sobre um substrato de silício (100) tipo “n”, tendo em vista que a eletrodeposição em um substrato semicondutor apresenta diferenças se comparada à eletrodeposição em um substrato metálico (condutor). Investigou-se a possível influência do nível de dopagem do semicondutor nas características do sistema eletroquímico e nos depósitos de cobalto. Para isto foram utilizadas amostras de Si (100) tipo “n”, de duas diferentes resistividades: <0,005Wcm e 50-100Wcm. Os depósitos de cobalto foram obtidos a partir de duas diferentes técnicas: potenciostática e galvanostática. Foram realizadas curvas de voltametria cíclica em solução contendo íon cobalto e em solução isenta do mesmo. Soluções de duas diferentes concentrações, 1mM e 10mM de CoSO4, foram utilizadas nos experimentos. Sacarina foi adicionada eventualmente à solução com o objetivo de refinar o tamanho dos núcleos de cobalto. A cinética de nucleação foi estudada utilizando os modelos teóricos para nucleação instantânea e progressiva propostos por Scharifker e Hills Tanto as curvas de voltametria cíclica quanto as cronopotenciométricas e cronoamperométricas apresentaram comportamento diferenciado quando da utilização de um eletrodo semicondutor com as duas diferentes resistividades. Através da utilização de um eletrodo metálico foi possível verificar as diferenças de comportamento existentes entre um eletrodo condutor e um semicondutor. Os depósitos de cobalto foram morfologicamente caracterizados por microscopia de força atômica e microscopia eletrônica de varredura. A superfície hidrogenada do silício, após a remoção do óxido de silício, foi observada por microscopia de força atômica. A técnica de difração de raios x foi utilizada para a verificação da estrutura do substrato e dos eletrodepósitos de cobalto. A caracterização magnética dos filmes de cobalto foi realizada por um magnetômetro de campo de gradiente alternado (AGFM). Os depósitos de cobalto obtidos potenciostaticamente apresentaram diferenças morfológicas quando obtidos sobre substrato de silício de diferentes resistividades. Apesar das diferenças morfológicas, as curvas de magnetização foram semelhantes. Com relação à microestrutura, houve a ocorrência de orientação preferencial e de ambas as fases do cobalto,hexagonal compacta e cúbica de face centrada. O aditivo sacarina alterou significativamente a morfologia, microestrutura e comportamento magnético dos depósitos. Depósitos galvanostáticos não apresentaram diferença morfológica significativa quando obtidos sobre silício de duas diferentes resistividades, porém, são morfologicamente diferentes dos depósitos potenciostáticos. A microestrutura destes depósitos apresentou predominância da fase amorfa. As curvas de magnetização também apresentaram diferenças das curvas obtidas para os depósitos potenciostáticos.
Resumo:
O Si tensionado (sSi) é um material com propriedades de transporte eletrônico bastante superiores as do Si, sendo considerado como uma alternativa importante para a produção de dispositivos MOSFET (transistor de efeito de campo metal-óxido-semicondutor) de mais alta performance (e.g. freqüências de operação f>100 GHz). O sSi é obtido através do crescimento epitaxial de Si sobre um substrato de mesma estrutura cristalina, porém com parâmetro de rede diferente. Esta tese apresenta uma investigação detalhada de um novo método que possibilita a produção de camadas relaxadas de Si1xGex com espessuras inferiores a 300 nm, consideradas como a melhor alternativa tecnológica para a produção de sSi. Este método envolve a implantação de íons de He+ ou de Si+ em heteroestruturas pseudomórficas de Si1-xGex/Si(001) e tratamentos térmicos. Foram estudados os efeitos dos diversos parâmetros experimentais de implantação e tratamentos térmicos sobre o processo de relaxação estrutural, utilizando-se heteroestruturas pseudomórficas de Si1-xGex/Si(001) crescidas via deposição de vapor químico, com distintas concentrações de Ge (0,19x 0,29) e com espessuras entre 70 e 425 nm. Com base no presente estudo foi possível identificar diversos mecanismos atômicos que influenciam o processo de relaxação estrutural das camadas de Si1-xGex/Si(001). O processo de relaxação é discutido em termos de um mecanismo complexo que envolve formação, propagação e interação de discordâncias a partir de defeitos introduzidos pela implantação. No caso das implantações de He, por exemplo, descobrimos que podem ocorrer perdas de He durante as implantações e que este efeito influencia negativamente a relaxação de camadas finas. Além disso, também demonstramos que os melhores resultados são obtidos para energias e fluências de implantação que resultam na formação de bolhas planas localizadas no substrato de Si a uma distância da interface equivalente a uma vez a espessura da camada de SiGe. O grau de relaxação satura em 50% para camadas de SiGe com espessura 100 nm. Este resultado é discutido em termos da energia elástica acumulada na camada de SiGe e da retenção de He. No caso de implantações de Si, discutimos a formação de defeitos tipo {311} e sua transformação térmica em discordâncias. Este estudo resultou numa visão abrangente dos principais fatores limitantes do processo, bem como na otimização dos valores de parâmetros experimentais para a produção de camadas de SiGe com alto grau de relaxação e com baixa densidade de defeitos.
Resumo:
É bem conhecido que técnicas experimentais que fazem uso de feixes iônicos induzem sobre a superfície dos alvos irradiados o depósito de diversos tipos de impurezas. Este depósito é causado pelas interações entre o feixe de íons, as moléculas de gás residual no interior das câmaras de irradiação e a superfície da amostra. Apesar do fato deste processo poder alterar significativamente os parâmetros de irradiações, bem como afetar a análise de materiais tratados, os parâmetros experimentais que influenciam na deposição das impurezas ainda não são bem conhecidos e nem o depósito se encontra suficientemente quantificado. No presente trabalho relatamos um estudo quantitativo da deposição de carbono sobre amostras de Si (100) irradiadas com feixes de He e H. A deposição de carbono foi determinada em função da fluência de irradiação, variando diversos parâmetros experimentais, tais como: pressão na câmara de irradiação, temperatura do alvo, densidade de corrente do feixe, energia do feixe e o estado da carga do íon. Em todos os casos a análise das amostras irradiadas foi feita pela técnica de Retroespalhamento de Rutherford em direção Canalizada (RBS/C) e através da reação nuclear ressonante 12C(a, a´)12C na energia de 4265 keV. Os resultados experimentais mostram que se consegue minimizar a deposição de C através: a) da redução do tempo de irradiação, b) da redução da pressão na câmara de irradiação, c) do aumento da temperatura do alvo durante a irradiação e d) minimização do poder de freamento do íon no alvo.
Resumo:
Neste trabalho estudam-se as propriedades de nanoestruturas de Ge e Sn formadas em amostras de SiO2/Si(100) através dos processos de implantação iônica e tratamento térmico. A formação de nanocristais de Ge foi investigada em função de tratamentos térmicos em ambiente de N2. Os resultados obtidos foram correlacionados com as propriedades de luminescência das amostras, sendo feita uma discussão sobre os mecanismos atômicos envolvidos no processo de crescimento dos nanocristais de Ge, bem como seus efeitos na criação de centros luminescentes no interior da camada de SiO2, que são responsáveis por intensas bandas de fotoluminescência (PL) nas regiões espectrais do azul-violeta (≈ 3,2 eV) e ultravioleta (≈ 4,2 eV). Além disso, experimentos de irradiação com diferentes íons (He+, Si+, Kr++, Au+) foram realizados antes da implantação do Ge com o objetivo de estudar o efeito de memória que os danos criados pela irradiação apresentam sobre as propriedades estruturais e luminescentes das amostras de SiO2/Si(100) No estudo das amostras de SiO2/Si(100) implantadas com Sn, a síntese de nanopartículas de Sn foi estudada em função da temperatura e do ambiente de tratamento térmico (N2 e vácuo). De maneira pioneira mostrou-se que através da manipulação desses parâmetros é possível formar desde grandes nanocristais bi-fásicos de Sn (≈ 12 a 25 nm) em estruturas concêntricas com núcleo de β-Sn e camada externa de SnOx, até pequenas nanopartículas de Sn com diâmetros de ≈ 2 nm e uniformemente distribuídas ao longo da camada de SiO2. Além disso, observou-se que a evolução estrutural do sistema de nanopartículas de Sn influencia diretamente as características das emissões de PL azul-violeta e UV. Por fim, um outro aspecto das nanoestruturas de Sn foi estudado: a formação de um denso arranjo de ilhas epitaxiais de β-Sn na região de interface SiO2/Si. Este sistema de nano-ilhas, que cresce epitaxialmente, é uniformemente distribuído sobre a superfície do Si, apresentando uma pequena dispersão em tamanho e tendência a se auto-organizar. A criação desse sistema de nano-ilhas epitaxiais através da utilização da implantação iônica é um processo inédito, sendo discutida aqui com base nas propriedades de equilíbrio do sistema Sn-Si.
Resumo:
Neste trabalho de tese, foi estudada a perda de energia de íons de Be, B e O incidindo em direção aleatória e ao longo dos canais axiais <100> e <110> do Si. Os intervalos de energia nos quais as medidas experimentais foram realizadas variaram entre 0,5 e 10 MeV para Be, entre 0,23 e 9 MeV para B e entre 0,35 e 15 MeV para O. Posteriormente, o efeito do “straggling” (flutuação estatística da perda de energia) nas medidas em direção aleatória também foi analisado, para íons de Be e O, nas regiões de energia entre 0,8 e 5 MeV e 0,35 e 13,5 MeV, respectivamente. As medidas relacionadas à perda de energia em direção aleatória e ao “straggling” em função da energia dos íons foram realizadas combinando-se a técnica de retroespalhamento Rutherford (RBS) ao emprego de amostras de Si implantadas com marcadores de Bi. Os resultados relativos à perda de energia ao longo dos canais <100> e <110> do Si em função da energia dos íons foram obtidos através de medidas de RBS canalizado feitas em amostras tipo SIMOX (Separated by IMplanted OXygen). A perda de energia foi calculada teoricamente, através de três abordagens diferentes: a) a Aproximação de Convolução Unitária (UCA); b) o método não-linear baseado na seção de choque de transporte e na regra da soma de Friedel estendida (TCS-EFSR); c) a teoria binária. A combinação dos cálculos UCA com os resultados experimentais para a perda de energia canalizada de Be, B e O em Si permitiu isolar a contribuição do efeito Barkas para a perda de energia. Essa contribuição mostrou ser bastante grande, chegando a 45% do valor das outras contribuições para o caso do Be, 40% para o caso do B e 38% para o caso do O. Esses resultados são comparáveis aos previamente obtidos no Laboratório de Implantação Iônica da UFRGS para íons de He e Li. As teorias TCS-EFSR e binária permitiram o cálculo do efeito Barkas para a perda de energia devida aos elétrons de valência. Os resultados teóricos e experimentais para a contribuição Barkas total e relativa foram comparados e analisados em função da carga média e da energia dos íons para as energias de 300, 400, 500 e 700 keV/uma. O acordo teórico-experimental é razoável para as energias mais baixas, melhorando com o aumento da energia dos íons incidentes.