2 resultados para Saturn-Ring Defects
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Empregamos a técnica de Dinâmica Molecular para estudar propriedades de defeitos pontuais nos compostos intermetálicos ZrNi e Zr2Ni. Descrevemos as configurações estáveis de defeitos e mecanismos de migração, assim como as energias envolvidas. Os potenciais interatômicos foram derivados do Embedded Atom Model. No intuito de levar em conta a variação de estequiometria causada pela presença de alguns tipos de defeitos em intermetálicos, apresentamos um método numérico que fornece a energia efetiva de formação de defeitos e aplicamos o método ao ZrNi e Zr2Ni. Os resultados mostraram que vacâncias são mais estáveis na sub—rede do Ni, com energia de formação de 0,83 e-0,61 eV em ZrNi e Zr2Ni, respectivamente. Vacâncias de Zr são instáveis em ambos compostos; elas decaem espontaneamente em pares anti—sítio e vacância de Ni. Configurações e energias de formação de intersticiais também foram calculadas e mostraram comportamentos similares. Em ZrNi, a migração de vacâncias ocorre preferencialmente nas direções [025] e [100], com as respectivas energias de migração 0,67 e 0,73 eV, e é um processo essencialmente bidimensional no plano (001). Em Zr,Ni, a migração de vacâncias é unidimensional, ocorrendo na direção [001], com energia de migração de 0,67 eV. Em ambos compostos a presença de defeitos de anti—sítio de Ni diminui a energia de migração da vacância de Ni em até 3 vezes e facilita a movimentação em três dimensões. Mecanismos de anel não são energeticamente eficientes em comparação com saltos diretos. As configurações estáveis de intersticiais em ambos compostos consistem em um átomo de Ni sobre o plano (001) entre dois vizinhos de Zr fora do plano. Intersticiais de Zr são instáveis e tendem a deslocar um átomo de Ni, ocupando seu sítio. Energias de deslocamento foram estudadas através de simulações de irradiação de ambos compostos. Durante o processo de colisão binária, um potencial universal ZBL foi usado para colisões a curta distância. Para distâncias intermediárias usamos um potencial de união arbitrário. Zr mostrou—se mais difícil de ser arrancado de seu sítio do que Ni. Encontramos valores de energia de deslocamento no intervalo de aproximadamente 29 eV até 546 eV. Alguns resultados experimentais são mostrados e apresentam boa concordância com os cálculos.
Resumo:
Os modelos computacionais SATURN e DRACULA avaliam o tráfego através de diferentes fundamentações teóricas. O SATURN é um modelo macroscópico de alocação de tráfego que incorpora uma estrutura mesoscópica de simulação de interseções. O DRACULA é um modelo microscópico de simulação de tráfego: reproduz a progressão dos veículos através da rede, representando cada entidade individualmente. Ambos os modelos foram desenvolvidos no ITS – Institute for Transport Studies – da Universidade de Leeds, e permitem a troca de informações, podendo ser aplicados em conjunto. O presente trabalho de pesquisa compara as estruturas de simulação do SATURN e do DRACULA. O estudo confronta as fundamentações teóricas dos modelos, relacionando-as com a aplicação prática. São avaliados os dados de entrada, os parâmetros de saída, e os processos particulares de estimação de parâmetros de cada modelo. Através de análises de sensibilidade, avalia-se o impacto da variação de dados de entrada nos parâmetros de saída. Em um estudo de caso, avalia-se a aplicação conjunta dos modelos, ao replicarem o mesmo cenário. O estudo identifica divergências e afinidades na conceituação e no tratamento de parâmetros de entrada e saída tais como dados de descrição de rede e demanda, atrasos, velocidades, tempos de viagem, e capacidade viária. Por fim, o estudo propõe recomendações sobre a implementação prática dos modelos, especialmente quando utilizados em conjunto.