9 resultados para Runge-Kutta methods

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho é a obtenção de uma técnica para a modelagem otimizada de corpos submetidos a fluxos de alta velocidade, como aerofólios em escoamentos transônicos e outras geometrias aerodinâmicas. A técnica é desenvolvida através de expansões em séries de Fourier para um conjunto de equações diferenciais com interrelação com as condições de contorno, sendo uma equação para a parte superior e outra para a parte inferior do aerofólio. O método de integração temporal empregado baseia-se no esquema explícito de Runge-Kutta de 5 estágios para as equações da quantidade de movimento e na relação de estado para a pressão. Para a aproximação espacial adota-se um esquema em volumes finitos no arranjo co-localizado em diferenças centrais. Utiliza-se dissipação artificial para amortecer as frequências de alta ordem do erro na solução das equações linearizadas. A obra apresenta a solução de escoamentos bi e tridimensionais de fluidos compressíveis transônicos em torno de perfis aerodinâmicos. Os testes num´ericos são realizados para as geometrias do NACA 0012 e 0009 e asas tridimensionais usando as equações de Euler, para número de Mach igual a 0.8 e ® = 0o. Os resultados encontrados comparam favoravelmente com os dados experimentais e numéricos disponíveis na literatura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho visa desenvolver um modelo físico e matemático geral para os processos de extração sólido-líquido em fluxos contracorrente cruzados (CCC) que são utilizados na indústria de alimentos. Levam-se em consideração os processos principais (o transporte de massa entre as fases, difusão e convecção) envolvidos por todo o campo de extração, com uma abordagem bidimensional evolutiva, incluindo as zonas de carregamento, drenagem e as bandejas acumuladoras. O modelo matemático é formado por equações diferenciais parciais que determinam a alteração das concentrações nas fases poro e “bulk” em todo o campo de extração e equações diferenciais ordinárias (que refletem as evoluções das concentrações médias nas bandejas). As condições de contorno estabelecem as ligações entre os fluxos CCC da micela e matéria-prima e consideram, também, a influência das zonas de drenagem e carregamento. O algoritmo de resolução utiliza o método de linhas que transforma as equações diferenciais parciais em equações diferenciais ordinárias, que são resolvidas pelo método de Runge-Kutta. Na etapa de validação do modelo foram estabelecidos os parâmetros da malha e o passo de integração, a verificação do código com a lei de conservação da espécie e um único estado estacionário. Também foram realizadas a comparação com os dados experimentais coletados no extrator real e com o método de estágios ideais, a análise da influência de propriedades da matéria-prima nas características principais do modelo, e estabelecidos os dados iniciais do regime básico (regime de operação) Foram realizadas pesquisas numéricas para determinar: os regimes estacionário e transiente, a variação da constante de equilíbrio entre as fases, a variação do número de seções, a alteração da vazão de matéria-prima nas características de um extrator industrial e, também foram realizadas as simulações comparativas para diferentes tipos de matéria-prima (flocos laminados e flocos expandidos) usados amplamente na indústria. Além dessas pesquisas, o modelo também permite simular diferentes tipos de solventes. O estudo da capacidade de produção do extrator revelou que é necessário ter cuidado com o aumento da vazão da matéria-prima, pois um pequeno aumento desta pode causar grandes perdas de óleo tornando alto o custo da produção. Mesmo que ainda seja necessário abastecer o modelo com mais dados experimentais, principalmente da matéria-prima, os resultados obtidos estão em concordância com os fenômenos físico-químicos envolvidos no processo, com a lei de conservação de espécies químicas e com os resultados experimentais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho é a simulação numérica de escoamentos incompressíveis bidimensionais em dutos com expansão brusca, considerando o raio de expansão de 3 : 1. As equações governantes implementadas são as de Navier, que junto com relações constitutivas para a tensão visam representar comportamentos não newtonianos. A integração temporal é feita usando o esquema explícito de Runge-Kutta com três estágios e de segunda ordem; as derivadas espaciais são aproximadas pelo método de diferenças finitas centrais. Escoamentos em expansões bruscas para fluidos newtonianos apresentam um número de Reynolds crítico, dependente do raio de expansão, na qual três soluções passam a ser encontradas: uma solução sim étrica instável e duas soluções assimétricas rebatidas estáveis. Aumentando o número de Reynolds, a solução passa a ser tridimensional e dependente do tempo. Dessa forma, o objetivo é encontrar as diferenças que ocorrem no comportamento do fluxo quando o fluido utilizado possui características não newtonianas. As relações constitutivas empregadas pertencem à classe de fluidos newtonianos generalizados: power-law, Bingham e Herschel-Bulkley. Esses modelos prevêem comportamentos pseudoplásticos e dilatantes, plásticos e viscoplásticos, respectivamente. Os resultados numéricos mostram diferenças entre as soluções newtonianas e não newtonianas para Reynolds variando de 30 a 300. Os valores de Reynolds críticos para o modelo power-law não apresentaram grandes diferenças em comparação com os da solução newtoniana. Algumas variações foram percebidas nos perfis de velocidade. Entretanto, os resultados obtidos com os modelos de Bingham e Herschel-Bulkley apresentaram diferenças significativas quando comparados com os newtonianos com o aumento do parâmetro adimensional Bingham; à medida que Bingham é aumentado, o tamanho dos vórtices diminui. Além disso, os perfis de velocidade apresentam diferenças relevantes, uma vez que o fluxo possui regiões onde o fluido se comporta como sólido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As aplicações da mecânica vibratória vêm crescendo significativamente na análise de sistemas de suspensões e estruturas de veículos, dentre outras. Desta forma, o presente trabalho desenvolve técnicas para a simulação e o controle de uma suspensão de automóvel utilizando modelos dinâmicos com um, dois e três graus de liberdade. Na obtenção das equações do movimento para o sistema massa-mola-amortecedor, o modelo matemático utilizado tem como base a equação de Lagrange e a segunda lei de Newton, com condições iniciais apropriadas. A solução numérica destas equações é obtida através do método de Runge-Kutta de 4ª ordem, utilizando o software MATLAB. Para controlar as vibrações do sistema utilizou-se três métodos diferentes de controle: clássico, LQR e alocação de pólos. O sistema assim obtido satisfaz as condições de estabilidade e de desempenho e é factível para aplicações práticas, pois os resultados obtidos comparam adequadamente com dados analíticos, numéricos ou experimentais encontrados na literatura, indicando que técnicas de controle como o clássico podem ser simples e eficientes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho desenvolve um método numérico para a solução de escoamentos bidimensionais em torno de geometrias automobilísticas utilizando o método de diferenças finitas. O código computacional resolve as equações de Navier-Stokes e de Euler para uma distribuição adequada dos pontos discretos na malha. O método de integração empregado baseia-se no esquema explícito de Runge-Kutta de 3 estágios para as equações da quantidade de movimento e no de sub-relaxações sucessivas para a pressão na base Gauss-Seidel. Utilizou-se a técnica dos contornos virtuais em coordenadas cartesianas para resolver o escoamento sobre uma geometria simplificada, com a superfície coincidente com a malha computacional, e uma geometria automobilística mais complexa (BMW). Para a certificação da técnica empregada, optou-se pela utilização da teoria do escoamento potencial e pela comparação com dados experimentais encontrados na literatura e outros coletados em túnel de vento em escala reduzida. Houve dificuldade nesta comparação devido à falta de artigos relativos às simulações numéricas de escoamentos sobre automóveis e na aplicação da técnica dos contornos virtuais em geometrias complexas. Os resultados foram satisfatórios, com boas perspectivas para trabalhos futuros, contribuindo assim para o desenvolvimento da área.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho desenvolvemos uma metodologia numérica para a solução do escoamento em torno de um vórtice. Como a análise completa deste tipo de fluxo não é uma tarefa fácil, simplificações quanto ao escoamento e ao método numérico são necessárias. Também investigamos o comportamento das soluções das equações governantes (Navier-Stokes) quando o tempo tende ao infinito. Nesse sentido, dividimos este trabalho em duas partes: uma numérica e outra analítica. Com o intuito de resolver numericamente o problema, adotamos o método de diferenças finitas baseado na formulação incompressível das equações governantes. O método numérico para integrar essas equações é baseado no esquema de Runge- Kutta com três estágios. Os resultados numéricos são obtidos para cinco planos bidimensionais de um vórtice com números de Reynolds variando entre 1000 e 10000. Na parte analítica estudamos taxas de decaimento das soluções das equações de Navier-Stokes quando os dados iniciais são conhecidos. Também estimamos as taxas de decaimento para algumas derivadas das soluções na norma L2 e comparamos com as taxas correspondentes da solução da equação do calor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho, apresenta-se um estudo numérico de um modelo convectivo-difusivo-reativo em combustão baseado no Método de Elementos Finitos. Primeiramente, apresenta-se o desenvolvimento das equações de balanço (quantidade de movimento, massa, espécie e energia) que modelam um processo de mistura molecular e reação química, irreversível, de passo único e exotérmica entre duas espécies químicas F (Combustível) e O (Oxidante). Tais espécies reagem e formam um produto P, conforme vFF +vOO ! vPP + calor, onde vF , vO e vP são os coeficientes estequiométricos molares. No modelo, considera-se que a reação é de primeira ordem com respeito a cada um dos reagentes e que a taxa de reação específica segue a cinética de Arrhenius. Em seguida, o modelo é estudado numericamente considerando-se um domínio retangular e condições de contorno do tipo Neumann. Tanto a Técnica das Diferenças Finitas como a Técnica de Elementos Finitos são utilizadas na discretização espacial das equações do modelo. Para a integração no tempo, utiliza-se a método de Runge-Kutta simplificado de três estágios. Os diferentes códigos computacionais obtidos, tanto pela Técnica de Diferenças Finitas como de Elementos Finitos, são comparados frente ao problema de interesse. Observa-se que ambas as técnicas apresentam resultados equivalentes. Além disso, os códigos desenvolvidos são robustos (capazes de lidar com vários conjuntos de parâmetros), de baixo custo e precisos. Por fim, apresenta-se uma revisão do trabalho de Zavaleta [48], no qual obtem-se uma estimativa local do erro na aproximação do problema estudado pela Técnica de Elementos Finitos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os afundamentos de tensão são reduções de curta duração entre o 10% a 90% da magnitude de tensão eficaz. Usualmente, estes afundamentos são associados com falhas no sistema de energia elétrica, mas podem ser causados pela elevada corrente de partida de motores de indução ou energização de transformadores. Apesar de sua curta duração, tais eventos podem causar sérios problemas para alguns equipamentos. As conseqüências dos afundamentos de tensão sobre a máquina assíncrona são: perda de velocidade durante o afundamento e picos de corrente e de conjugado que aparecem na queda de tensão e no instante de restabelecimento. Este estudo visa analisar o comportamento da máquina assíncrona diante de afundamentos de tensão e as características destes, devido à influência do motor assíncrono como carga. Enfocando-se neste ponto, é que foram considerados diferentes tipos de afundamentos devido a diferentes falhas, que produziram quedas de tensão nos terminais da máquina assíncrona com variações na magnitude e no argumento de tensão. As simulações foram realizadas aplicando um método numérico tradicional e um método simplificado, o método simplificado lineariza as equações diferenciais elétricas da máquina assíncrona considerando a velocidade mecânica constante, para o cálculo dos transitórios elétricos no início da queda de tensão e no restabelecimento da mesma. Os transitórios obtidos pelo método numérico tradicional (Runge Kutta quarta ordem) e o método simplificado foram comparados, para verificar a precisão deste método com respeito ao numérico tradicional, concluindo-se, que o método simplificado poderá aplicar-se em máquinas de baixo escorregamento e elevada constante de inércia. Além disso, foram realizados experimentos, submetendo o sistema a diferentes quedas de tensão, considerando diferentes magnitudes e durações no afundamento.