3 resultados para Rst
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
In this thesis, we present a novel approach to combine both reuse and prediction of dynamic sequences of instructions called Reuse through Speculation on Traces (RST). Our technique allows the dynamic identification of instruction traces that are redundant or predictable, and the reuse (speculative or not) of these traces. RST addresses the issue, present on Dynamic Trace Memoization (DTM), of traces not being reused because some of their inputs are not ready for the reuse test. These traces were measured to be 69% of all reusable traces in previous studies. One of the main advantages of RST over just combining a value prediction technique with an unrelated reuse technique is that RST does not require extra tables to store the values to be predicted. Applying reuse and value prediction in unrelated mechanisms but at the same time may require a prohibitive amount of storage in tables. In RST, the values are already stored in the Trace Memoization Table, and there is no extra cost in reading them if compared with a non-speculative trace reuse technique. . The input context of each trace (the input values of all instructions in the trace) already stores the values for the reuse test, which may also be used for prediction. Our main contributions include: (i) a speculative trace reuse framework that can be adapted to different processor architectures; (ii) specification of the modifications in a superscalar, superpipelined processor in order to implement our mechanism; (iii) study of implementation issues related to this architecture; (iv) study of the performance limits of our technique; (v) a performance study of a realistic, constrained implementation of RST; and (vi) simulation tools that can be used in other studies which represent a superscalar, superpipelined processor in detail. In a constrained architecture with realistic confidence, our RST technique is able to achieve average speedups (harmonic means) of 1.29 over the baseline architecture without reuse and 1.09 over a non-speculative trace reuse technique (DTM).
Resumo:
This thesis addresses the problem of the academic identity of the area traditionally referred to as physical education. The study is a critical examination of the argu ments for the justi cation of this area as an autonomous branch of knowledge. The investigation concentrates on a selected number of arguments. The data collection comprised articles books and proceedings of conferences. The preliminary assessment of these materials resulted in a classi cation of the arguments into three groups. The rst group comprises the arguments in favour of physical education as an academic discipline. The second includes the arguments supporting a science of sport. The third consists of the arguments in favour of to a eld of human movement study. The examination of these arguments produced the following results. (a) The area of physical education does not satisfy the conditions presupposed by the de nition of academic discipline. This is so because the area does not form an integrated system of scienti c theories. (b) The same di culty emerges from the examination of the ar guments for sport science. There is no science of sport because there is no integrated system of scienti c theories related to sport. (c) The arguments in favour of a eld of study yielded more productive results. However di culties arise from the de nition of human movement. The analysis of this concept showed that its limits are not well demarcated. This makes it problematic to take human movement as the focus of a eld of studies. These aspects led to the conclusion that such things as an academic discipline of physical education sport science and eld of human movement studies do not exist. At least there are not such things in the sense of autonomous branches of knowledge. This does not imply that a more integrated inquiry based on several disciplines is not possible and desirable. This would enable someone entering phys ical education to nd a more organised structure of knowledge with some generally accepted problem situations procedures and theories on which to base professional practice.
Resumo:
XML has become an important medium for data exchange, and is frequently used as an interface to - i.e. a view of - a relational database. Although lots of work have been done on querying relational databases through XML views, the problem of updating relational databases through XML views has not received much attention. In this work, we give the rst steps towards solving this problem. Using query trees to capture the notions of selection, projection, nesting, grouping, and heterogeneous sets found throughout most XML query languages, we show how XML views expressed using query trees can be mapped to a set of corresponding relational views. Thus, we transform the problem of updating relational databases through XML views into a classical problem of updating relational databases through relational views. We then show how updates on the XML view are mapped to updates on the corresponding relational views. Existing work on updating relational views can then be leveraged to determine whether or not the relational views are updatable with respect to the relational updates, and if so, to translate the updates to the underlying relational database. Since query trees are a formal characterization of view de nition queries, they are not well suited for end-users. We then investigate how a subset of XQuery can be used as a top level language, and show how query trees can be used as an intermediate representation of view de nitions expressed in this subset.