83 resultados para Regras de associação

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.