70 resultados para Reconhecimento de imagens
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.
Resumo:
Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.
Resumo:
Com o advento dos sensores hiperespectrais se tornou possível em sensoriamento remoto, uma serie de diferentes aplicações. Uma delas, é a possibilidade de se discriminar classes com comportamentos espectrais quase idênticas. Porém um dos principais problemas encontrados quando se trabalha com dados de alta dimensionalidade, é a dificuldade em estimar os inúmeros parâmetros que se fazem necessários. Em situações reais é comum não se ter disponibilidade de tamanho de amostra suficiente, por exemplo, para se estimar a matriz de covariâncias de forma confiável. O sensor AVIRIS fornece uma riqueza de informações sobre os alvos, são 224 bandas cobrindo o espectro eletromagnético, o que permite a observação do comportamento espectral dos alvos de forma muito detalhada. No entanto surge a dificuldade de se contar com uma amostra suficiente para se estimar a matriz de covariâncias de uma determinada classe quando trabalhamos com dados do sensor AVIRIS, para se ter uma idéia é preciso estimar 25.200 parâmetros somente na matriz de covariâncias, o que necessitaria de uma amostra praticamente impraticável na realidade. Surge então a necessidade de se buscar formas de redução da dimensionalidade, sem que haja perda significativa de informação. Esse tipo de problema vem sendo alvo de inúmeros estudos na comunidade acadêmica internacional. Em nosso trabalho pretendemos sugerir a redução da dimensionalidade através do uso de uma ferramenta da geoestatística denominada semivariograma. Investigaremos se os parâmetros calculados para determinadas partições do transecto de bandas do sensor AVIRIS são capazes de gerar valores médios distintos para classes com comportamentos espectrais muito semelhantes, o que por sua vez, facilitaria a classificação/discriminação destas classes.
Resumo:
A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.
Resumo:
Técnicas de visualização volumétrica direta propiciam a geração de imagens de alta qualidade já que se baseiam na amostragem do volume de dados original. Tal característica é particularmente importante na área da Medicina, onde imagens digitais de dados volumétricos devem ganhar maior importância como meio de apoio à tomada de decisão por parte dos médicos. No entanto, a geração de imagens com melhor qualidade possível acarreta um alto custo computacional, principalmente em relação ao algoritmo de ray casting, onde a qualidade de imagens depende de um maior número de amostras ao longo do raio fato este refletido no tempo de geração. Assim, a utilização de tais imagens em ambientes interativos é muitas vezes inviabilizada e, para a redução do custo computacional, é necessário abdicar parcialmente da qualidade da imagem. O conceito de qualidade é altamente subjetivo, e sua quantificação está fortemente relacionada à tarefa para qual a imagem está destinada. Na área da Medicina, imagem de boa qualidade é aquela que possibilita ao médico a análise dos dados através da sua representação visual, conduzindo-o a um diagnóstico ou prognóstico corretos. Nota-se que é necessário, então, avaliar a qualidade da imagem em relação a uma determinada tarefa a partir de critérios e métricas subjetivas ou objetivas. A maior parte das métricas objetivas existentes medem a qualidade de imagens com base no cálculo da diferença de intensidade dos pixels, fator que pode não ser suficiente para avaliar a qualidade de imagens do ponto de vista de observadores humanos. Métricas subjetivas fornecem informação mais qualificada a respeito da qualidade de imagens, porém são bastante custosas de serem obtidas. De modo a considerar tais aspectos, o presente trabalho propõe uma métrica objetiva que procura aproximar a percepção humana ao avaliar imagens digitais quanto à qualidade apresentada. Para tanto, emprega o operador gradiente de Sobel (enfatização de artefatos) e o reconhecimento de padrões para determinar perda de qualidade das imagens tal como apontado por observadores humanos. Os resultados obtidos, a partir da nova métrica, são comparados e discutidos em relação aos resultados providos por métricas objetivas existentes. De um modo geral, a métrica apresentada neste estudo procura fornecer uma informação mais qualificada do que métricas existentes para a medida de qualidade de imagens, em especial no contexto de visualização volumétrica direta. Este estudo deve ser considerado um passo inicial para a investigação de uma métrica objetiva mais robusta, modelada a partir de estudos subjetivos.
Resumo:
Esta dissertação, História do Povo Surdo em Porto Alegre, Imagens e Sinais de uma Trajetória Cultural traz a narrativa, através de fotografias, da evolução das políticas surdas em Porto Alegre. O Referencial teórico utilizado para embasar as narrativas em seus contextos históricos e culturais foi o dos Estudos Surdos, Estudos Culturais e Análise de Fotografias. A documentação destes eventos importantes para o povo surdo local possibilitou o registro do desenvolvimento e das articulações feitas pelas pessoas surdas em busca de seu reconhecimento como grupo cultural e não como sujeitos deficitários, desde a década de 1950 até os dias atuais. As histórias registradas nas fotografias, narradas por seus protagonistas, mostram a construção do Povo Surdo, passo a passo, historicamente.
Resumo:
A tradicional técnica de regressão logística, muito conhecida e utilizada em estudos médicos, permitia apenas a modelagem de variáveis-resposta binárias. A extensão do modelo logístico para variáveis-resposta multinominais ampliou em muito as áreas de aplicação de regressão logística. Na área de reconhecimento de padrões o modelo logístico multinominal recebeu a denominação de discriminação logística apresenta aparentes vantagens em relação a métodos convencionais de classificação. O método da máxima verossimilhança gaussiana, amplamente difundido e utilizado, necessita da estimação de um número muito grande de parâmetros, pois supõe que as distribuições subjacentes de cada classe sejam normais multivariadas. A discriminação logística por sua vez, não faz restrições quanto a forma funcional das variáveis, e o número de parâmetros do modelo é relativamente pequeno. Nesse estudo, os princípios da técnica de discriminação logística são apresentados detalhadamente, bem como aplicações práticas de classificação de imagens Landsat-TM e AVIRIS. Os procedimentos de discriminação logística e da máxima verossimilhança gaussiana foram comparados a partir de dados reais e simulados. Os resultados sugerem que a discriminação logística seja considerada como uma alternativa ao método da máximaverossimilhança gaussiana, principalmente quando os dados apresentarem desvios da normalidade.
Resumo:
A textura é um atributo ainda pouco utilizado no reconhecimento automático de cenas naturais em sensoriamento remoto, já que ela advém da sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil a sua quantificação. A morfologia matemática, através de operações como erosão, dilatação e abertura, permite decompor uma imagem em elementos fundamentais, as primitivas texturais. As primitivas texturais apresentam diversas dimensões, sendo possível associar um conjunto de primitivas com dimensões semelhantes, em uma determinada classe textural. O processo de classificação textural quantifica as primitivas texturais, extrai as distribuições das dimensões das mesmas e separa as diferentes distribuições por meio de um classificador de máxima-verossimilhança gaussiana. O resultado final é uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original.