6 resultados para Reconfigurable architectures

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we present a novel approach to combine both reuse and prediction of dynamic sequences of instructions called Reuse through Speculation on Traces (RST). Our technique allows the dynamic identification of instruction traces that are redundant or predictable, and the reuse (speculative or not) of these traces. RST addresses the issue, present on Dynamic Trace Memoization (DTM), of traces not being reused because some of their inputs are not ready for the reuse test. These traces were measured to be 69% of all reusable traces in previous studies. One of the main advantages of RST over just combining a value prediction technique with an unrelated reuse technique is that RST does not require extra tables to store the values to be predicted. Applying reuse and value prediction in unrelated mechanisms but at the same time may require a prohibitive amount of storage in tables. In RST, the values are already stored in the Trace Memoization Table, and there is no extra cost in reading them if compared with a non-speculative trace reuse technique. . The input context of each trace (the input values of all instructions in the trace) already stores the values for the reuse test, which may also be used for prediction. Our main contributions include: (i) a speculative trace reuse framework that can be adapted to different processor architectures; (ii) specification of the modifications in a superscalar, superpipelined processor in order to implement our mechanism; (iii) study of implementation issues related to this architecture; (iv) study of the performance limits of our technique; (v) a performance study of a realistic, constrained implementation of RST; and (vi) simulation tools that can be used in other studies which represent a superscalar, superpipelined processor in detail. In a constrained architecture with realistic confidence, our RST technique is able to achieve average speedups (harmonic means) of 1.29 over the baseline architecture without reuse and 1.09 over a non-speculative trace reuse technique (DTM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this thesis is to discuss the development and modeling of an interface architecture to be employed for interfacing analog signals in mixed-signal SOC. We claim that the approach that is going to be presented is able to achieve wide frequency range, and covers a large range of applications with constant performance, allied to digital configuration compatibility. Our primary assumptions are to use a fixed analog block and to promote application configurability in the digital domain, which leads to a mixed-signal interface. The use of a fixed analog block avoids the performance loss common to configurable analog blocks. The usage of configurability on the digital domain makes possible the use of all existing tools for high level design, simulation and synthesis to implement the target application, with very good performance prediction. The proposed approach utilizes the concept of frequency translation (mixing) of the input signal followed by its conversion to the ΣΔ domain, which makes possible the use of a fairly constant analog block, and also, a uniform treatment of input signal from DC to high frequencies. The programmability is performed in the ΣΔ digital domain where performance can be closely achieved according to application specification. The interface performance theoretical and simulation model are developed for design space exploration and for physical design support. Two prototypes are built and characterized to validate the proposed model and to implement some application examples. The usage of this interface as a multi-band parametric ADC and as a two channels analog multiplier and adder are shown. The multi-channel analog interface architecture is also presented. The characterization measurements support the main advantages of the approach proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis aims to support the distributed design of integrated systems and considers specifically the need for collaborative interaction among designers. Particular emphasis was given to issues which were only marginally considered in previous approaches, such as the abstraction of the distribution of design automation resources over the network, the possibility of both synchronous and asynchronous interaction among designers and the support for extensible design data models. Such issues demand a rather complex software infrastructure, as possible solutions must encompass a wide range of software modules: from user interfaces to middleware to databases. To build such structure, several engineering techniques were employed and some original solutions were devised. The core of the proposed solution is based in the joint application of two homonymic technologies: CAD Frameworks and object-oriented frameworks. The former concept was coined in the late 80's within the electronic design automation community and comprehends a layered software environment which aims to support CAD tool developers, CAD administrators/integrators and designers. The latter, developed during the last decade by the software engineering community, is a software architecture model to build extensible and reusable object-oriented software subsystems. In this work, we proposed to create an object-oriented framework which includes extensible sets of design data primitives and design tool building blocks. Such object-oriented framework is included within a CAD Framework, where it plays important roles on typical CAD Framework services such as design data representation and management, versioning, user interfaces, design management and tool integration. The implemented CAD Framework - named Cave2 - followed the classical layered architecture presented by Barnes, Harrison, Newton and Spickelmier, but the possibilities granted by the use of the object-oriented framework foundations allowed a series of improvements which were not available in previous approaches: - object-oriented frameworks are extensible by design, thus this should be also true regarding the implemented sets of design data primitives and design tool building blocks. This means that both the design representation model and the software modules dealing with it can be upgraded or adapted to a particular design methodology, and that such extensions and adaptations will still inherit the architectural and functional aspects implemented in the object-oriented framework foundation; - the design semantics and the design visualization are both part of the object-oriented framework, but in clearly separated models. This allows for different visualization strategies for a given design data set, which gives collaborating parties the flexibility to choose individual visualization settings; - the control of the consistency between semantics and visualization - a particularly important issue in a design environment with multiple views of a single design - is also included in the foundations of the object-oriented framework. Such mechanism is generic enough to be also used by further extensions of the design data model, as it is based on the inversion of control between view and semantics. The view receives the user input and propagates such event to the semantic model, which evaluates if a state change is possible. If positive, it triggers the change of state of both semantics and view. Our approach took advantage of such inversion of control and included an layer between semantics and view to take into account the possibility of multi-view consistency; - to optimize the consistency control mechanism between views and semantics, we propose an event-based approach that captures each discrete interaction of a designer with his/her respective design views. The information about each interaction is encapsulated inside an event object, which may be propagated to the design semantics - and thus to other possible views - according to the consistency policy which is being used. Furthermore, the use of event pools allows for a late synchronization between view and semantics in case of unavailability of a network connection between them; - the use of proxy objects raised significantly the abstraction of the integration of design automation resources, as either remote or local tools and services are accessed through method calls in a local object. The connection to remote tools and services using a look-up protocol also abstracted completely the network location of such resources, allowing for resource addition and removal during runtime; - the implemented CAD Framework is completely based on Java technology, so it relies on the Java Virtual Machine as the layer which grants the independence between the CAD Framework and the operating system. All such improvements contributed to a higher abstraction on the distribution of design automation resources and also introduced a new paradigm for the remote interaction between designers. The resulting CAD Framework is able to support fine-grained collaboration based on events, so every single design update performed by a designer can be propagated to the rest of the design team regardless of their location in the distributed environment. This can increase the group awareness and allow a richer transfer of experiences among them, improving significantly the collaboration potential when compared to previously proposed file-based or record-based approaches. Three different case studies were conducted to validate the proposed approach, each one focusing one a subset of the contributions of this thesis. The first one uses the proxy-based resource distribution architecture to implement a prototyping platform using reconfigurable hardware modules. The second one extends the foundations of the implemented object-oriented framework to support interface-based design. Such extensions - design representation primitives and tool blocks - are used to implement a design entry tool named IBlaDe, which allows the collaborative creation of functional and structural models of integrated systems. The third case study regards the possibility of integration of multimedia metadata to the design data model. Such possibility is explored in the frame of an online educational and training platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As modernas aplicações em diversas áreas como multimídia e telecomunicações exigem arquiteturas que ofereçam altas taxas de processamento. Entretanto, os padrões e algoritmos mudam com incrível rapidez o que gera a necessidade de que esses sistemas digitais tenham também por característica uma grande flexibilidade. Dentro desse contexto, tem-se as arquiteturas reconfiguráveis em geral e, mais recentemente, os sistemas reconfiguráveis em um único chip como soluções adequadas que podem oferecer desempenho, sendo, ao mesmo tempo, adaptáveis a novos problemas e a classes mais amplas de algoritmos dentro de um dado escopo de aplicação. Este trabalho apresenta o estado-da-arte em relação a arquiteturas reconfiguráveis nos meios acadêmcio e industrial e descreve todas as etapas de desenvolvimento do processador de imagens reconfigurável DRIP (Dynamically Reconfigurable Image Processor), desde suas origens como um processador estático até sua última versão reconfigurável em tempo de execução. O DRIP possui um pipeline composto por 81 processadores elementares. Esses processadores constituem a chave do processo de reconfiguração e possuem a capacidade de computar um grande número de algoritmos de processamento de imagens, mais específicamente dentro do domínio da filtragem digital de imagens. Durante o projeto, foram desenvolvidos uma série de modelos em linguagem de descrição de hardware da arquitetura e também ferramentas de software para auxiliar nos processos de implementação de novos algorimos, geração automática de modelos VHDL e validação das implementações. O desenvolvimento de mecanismos com o objetivo de incluir a possibilidade de reconfiguração dinâmica, naturalmente, introduz overheads na arquitetura. Contudo, o processo de reconfiguração do DRIP-RTR é da ordem de milhões de vezes mais rápido do que na versão estaticamente reconfigurável implementada em FPGAs Altera. Finalizando este trabalho, é apresentado o projeto lógico e elétrico do processador elementar do DRIP, visando uma futura implementação do sistema diretamente como um circuito VLSI.