3 resultados para Procesamiento Automático
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Este trabalho foi realizado dentro da área de reconhecimento automático de voz (RAV). Atualmente, a maioria dos sistemas de RAV é baseada nos modelos ocultos de Markov (HMMs) [GOM 99] [GOM 99b], quer utilizando-os exclusivamente, quer utilizando-os em conjunto com outras técnicas e constituindo sistemas híbridos. A abordagem estatística dos HMMs tem mostrado ser uma das mais poderosas ferramentas disponíveis para a modelagem acústica e temporal do sinal de voz. A melhora da taxa de reconhecimento exige algoritmos mais complexos [RAV 96]. O aumento do tamanho do vocabulário ou do número de locutores exige um processamento computacional adicional. Certas aplicações, como a verificação de locutor ou o reconhecimento de diálogo podem exigir processamento em tempo real [DOD 85] [MAM 96]. Outras aplicações tais como brinquedos ou máquinas portáveis ainda podem agregar o requisito de portabilidade, e de baixo consumo, além de um sistema fisicamente compacto. Tais necessidades exigem uma solução em hardware. O presente trabalho propõe a implementação de um sistema de RAV utilizando hardware baseado em FPGAs (Field Programmable Gate Arrays) e otimizando os algoritmos que se utilizam no RAV. Foi feito um estudo dos sistemas de RAV e das técnicas que a maioria dos sistemas utiliza em cada etapa que os conforma. Deu-se especial ênfase aos Modelos Ocultos de Markov, seus algoritmos de cálculo de probabilidades, de treinamento e de decodificação de estados, e sua aplicação nos sistemas de RAV. Foi realizado um estudo comparativo dos sistemas em hardware, produzidos por outros centros de pesquisa, identificando algumas das suas características mais relevantes. Foi implementado um modelo de software, descrito neste trabalho, utilizado para validar os algoritmos de RAV e auxiliar na especificação em hardware. Um conjunto de funções digitais implementadas em FPGA, necessárias para o desenvolvimento de sistemas de RAV é descrito. Foram realizadas algumas modificações nos algoritmos de RAV para facilitar a implementação digital dos mesmos. A conexão, entre as funções digitais projetadas, para a implementação de um sistema de reconhecimento de palavras isoladas é aqui apresentado. A implementação em FPGA da etapa de pré-processamento, que inclui a pré-ênfase, janelamento e extração de características, e a implementação da etapa de reconhecimento são apresentadas finalmente neste trabalho.
Resumo:
Este trabalho apresenta a pesquisa e o desenvolvimento da ferramenta para geração automática de leiautes WTROPIC. O WTROPIC é uma ferramenta para a geração remota, acessível via WWW, de leiautes para circuitos CMOS adequada ao projeto FUCAS e ao ambiente CAVE. O WTROPIC foi concebido a partir de otimizações realizadas na versão 3 da ferramenta TROPIC. É mostrado também, como as otimizações no leiaute do TROPIC foram implementadas e como essas otimizações permitem ao WTROPIC cerca de 10% de redução da largura dos circuitos gerados em comparação ao TROPIC. Como o TROPIC, o WTROPIC é um gerador de macro células CMOS independente de biblioteca. Apresenta-se também, como a ferramenta WTROPIC foi integrada ao ambiente de concepção de circuitos CAVE, as mudanças propostas para metodologia de integração de ferramentas do CAVE que conduzem a uma melhora na qualidade de integração e a padronização das interfaces de usuário e como a síntese física de um leiaute pode ser então realizada remotamente. Dessa maneira, obteve-se uma ferramenta para a concepção de leiautes disponível a qualquer usuário com acesso a internet, mesmo que esse usuário não disponha de uma máquina com elevada capacidade de processamento, normalmente exigido por ferramentas de CAD.
Resumo:
As técnicas utilizadas em sistemas de reconhecimento automático de locutor (RAL) objetivam identificar uma pessoa através de sua voz, utilizando recursos computacionais. Isso é feito a partir de um modelamento para o processo de produção da voz. A modelagem detalhada desse processo deve levar em consideração a variação temporal da forma do trato vocal, as ressonâncias associadas à sua fisiologia, perdas devidas ao atrito viscoso nas paredes internas do trato vocal, suavidade dessas paredes internas, radiação do som nos lábios, acoplamento nasal, flexibilidade associada à vibração das cordas vocais, etc. Alguns desses fatores são modelados por um sistema que combina uma fonte de excitação periódica e outra de ruído branco, aplicadas a um filtro digital variante no tempo. Entretanto, outros fatores são desconsiderados nesse modelamento, pela simples dificuldade ou até impossibilidade de descrevê-los em termos de combinações de sinais, filtros digitais, ou equações diferenciais. Por outro lado, a Teoria dos Sistemas Dinâmicos Não-Lineares ou Teoria do Caos oferece técnicas para a análise de sinais onde não se sabe, ou não é conhecido, o modelo detalhado do mecanismo de produção desses sinais. A análise através dessa teoria procura avaliar a dinâmica do sinal e, assumindo-se que tais amostras provêm de um sistema dinâmico não-linear, medidas qualitativas podem ser obtidas desse sistema. Essas medidas não fornecem informações precisas quanto ao modelamento do processo de produção do sinal avaliado, isto é, o modelo analítico é ainda inacessível. Entretanto, pode-se aferir a respeito de suaO problema analisado ao longo deste trabalho trata da busca de novos métodos para extrair informações úteis a respeito do locutor que produziu um determinado sinal de voz. Com isso, espera-se conceber sistemas que realizem a tarefa de reconhecer um pessoa automaticamente através de sua voz de forma mais exata, segura e robusta, contribuindo para o surgimento de sistemas de RAL com aplicação prática. Para isso, este trabalho propõe a utilização de novas ferramentas, baseadas na Teoria dos Sistemas Dinâmicos Não-Lineares, para melhorar a caracterização de uma pessoa através de sua voz. Assim, o mecanismo de produção do sinal de voz é analisado sob outro ponto de vista, como sendo o produto de um sistema dinâmico que evolui em um espaço de fases apropriado. Primeiramente, a possibilidade de utilização dessas técnicas em sinais de voz é verificada. A seguir, demonstra-se como as técnicas para estimação de invariantes dinâmicas não-lineares podem ser adaptadas para que possam ser utilizadas em sistemas de RAL. Por fim, adaptações e automatizações algorítmicas para extração de invariantes dinâmicas são sugeridas para o tratamento de sinais de voz. A comprovação da eficácia dessa metodologia se deu pela realização de testes comparativos de exatidão que, de forma estatisticamente significativa, mostraram o benefício advindo das modificações sugeridas. A melhora obtida com o acréscimo de invariantes dinâmicas da forma proposta no sistema de RAL utilizado nos testes resultou na diminuição da taxa de erro igual (EER) em 17,65%, acarretando um intrínseco aumento de processamento. Para sinais de voz contaminados com ruído, o benefício atingido com o sistema proposto foi verificado para relações sinal ruído (SNRs) maiores que aproximadamente 5 dB. O avanço científico potencial advindo dos resultados alcançados com este trabalho não se limita às invariantes dinâmicas utilizadas, e nem mesmo à caracterização de locutores. A comprovação da possibilidade de utilização de técnicas da Teoria do Caos em sinais de voz permitirá expandir os conceitos utilizados em qualquer sistema que processe digitalmente sinais de voz. O avanço das técnicas de Sistemas Dinâmicos Não-Lineares, como a concepção de invariantes dinâmicas mais representativas e robustas, implicará também no avanço dos sistemas que utilizarem esse novo conceito para tratamento de sinais vocais.