2 resultados para Polynomial-time algorithm

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Audio coding is used to compress digital audio signals, thereby reducing the amount of bits needed to transmit or to store an audio signal. This is useful when network bandwidth or storage capacity is very limited. Audio compression algorithms are based on an encoding and decoding process. In the encoding step, the uncompressed audio signal is transformed into a coded representation, thereby compressing the audio signal. Thereafter, the coded audio signal eventually needs to be restored (e.g. for playing back) through decoding of the coded audio signal. The decoder receives the bitstream and reconverts it into an uncompressed signal. ISO-MPEG is a standard for high-quality, low bit-rate video and audio coding. The audio part of the standard is composed by algorithms for high-quality low-bit-rate audio coding, i.e. algorithms that reduce the original bit-rate, while guaranteeing high quality of the audio signal. The audio coding algorithms consists of MPEG-1 (with three different layers), MPEG-2, MPEG-2 AAC, and MPEG-4. This work presents a study of the MPEG-4 AAC audio coding algorithm. Besides, it presents the implementation of the AAC algorithm on different platforms, and comparisons among implementations. The implementations are in C language, in Assembly of Intel Pentium, in C-language using DSP processor, and in HDL. Since each implementation has its own application niche, each one is valid as a final solution. Moreover, another purpose of this work is the comparison among these implementations, considering estimated costs, execution time, and advantages and disadvantages of each one.