2 resultados para Periodic boundary conditions
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Fundamentalmente, o presente trabalho faz uma análise elástica linear de pontes ou vigas curvas assimétricas de seção transversal aberta e de parede fina, com propriedades físicas, geométricas e raio de curvatura constantes ao longo do eixo baricêntrico. Para tanto, utilizaram-se as equações diferenciais de VLASOV considerando o acoplamento entre as deformações nas direções vertical, transversal, axial de torcão nal. Na solução do sistema de quatro equações com derivadas parciais foi utilizado um apropriado método numérico de integração (Diferenças Finitas Centrais). A análise divide-se, basicamente, em dois tipos: análise DINÂMICA e ESTATICA. Ambas são utilizadas também na determinação do coeficiente de impacto (C.M.D.). A primeira refere-se tanto na determinação das características dinâmicas básicas (frequências naturais e respectivos modos de vibração), como também na determinação da resposta dinâmica da viga, em tensões e deformações, para cargas móveis arbitrárias. Vigas com qualquer combinação das condições de contorno, incluindo bordos rotulados e engastados nas três direções de flexão e na torção, são consideradas. 0s resultados da análise teórica, obtidos pela aplicação de programas computacionais implementados em microcomputador (análise estática) e no computador B-6700 (análise dinâmica), são comparados tanto com os da bibliografia técnica como também com resultados experimentais, apresentando boa correlação.
Resumo:
O objetivo deste trabalho é a introdução e desenvolvimento de uma metodologia analítico-simbólica para a obtenção de respostas dinâmicas e forçadas (soluções homogêneas e não homogêneas) de sistemas distribuídos, em domínios ilimitados e limitados, através do uso da base dinâmica gerada a partir da resposta impulso. Em domínios limitados, a resposta impulso foi formulada pelo método espectral. Foram considerados sistemas com condições de contorno homogêneas e não homogêneas. Para sistemas de natureza estável, a resposta forçada é decomposta na soma de uma resposta particular e de uma resposta livre induzida pelos valores iniciais da resposta particular. As respostas particulares, para entradas oscilatórias no tempo, foram calculadas com o uso da fun»c~ao de Green espacial. A teoria é desenvolvida de maneira geral permitindo que diferentes sis- temas evolutivos de ordem arbitrária possam ser tratados sistematicamente de uma forma compacta e simples. Realizou-se simulações simbólicas para a obtenção de respostas dinâmicas e respostas for»cadas com equações do tipo parabólico e hiperbólico em 1D,2D e 3D. O cálculo das respostas forçadas foi realizado com a determinação das respostas livres transientes em termos dos valores iniciais das respostas permanentes. Foi simulada a decomposição da resposta forçada da superfície livre de um modelo acoplado oceano-atmosfera bidimensional, através da resolução de uma equação de Klein-Gordon 2D com termo não-homogêneo de natureza dinâmica, devido a tensão de cisalhamento na superfície do oceano pela ação do vento.