1 resultado para Ortogonal
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Nesse trabalho apresentamos algoritmos adaptativos do M´etodo do Res´ıduo M´ınimo Generalizado (GMRES) [Saad e Schultz, 1986], um m´etodo iterativo para resolver sistemas de equa¸c˜oes lineares com matrizes n˜ao sim´etricas e esparsas, o qual baseia-se nos m´etodos de proje¸c˜ao ortogonal sobre um subespa¸co de Krylov. O GMRES apresenta uma vers˜ao reinicializada, denotada por GMRES(m), tamb´em proposta por [Saad e Schultz, 1986], com o intuito de permitir a utiliza¸c˜ao do m´etodo para resolver grandes sistemas de n equa¸c˜oes, sendo n a dimens˜ao da matriz dos coeficientes do sistema, j´a que a vers˜ao n˜ao-reinicializada (“Full-GMRES”) apresenta um gasto de mem´oria proporcional a n2 e de n´umero de opera¸c˜oes de ponto-flutuante proporcional a n3, no pior caso. No entanto, escolher um valor apropriado para m ´e dif´ıcil, sendo m a dimens˜ao da base do subespa¸co de Krylov, visto que dependendo do valor do m podemos obter a estagna¸c˜ao ou uma r´apida convergˆencia. Dessa forma, nesse trabalho, acrescentamos ao GMRES(m) e algumas de suas variantes um crit´erio que tem por objetivo escolher, adequadamente, a dimens˜ao, m da base do subespa¸co de Krylov para o problema o qual deseja-se resolver, visando assim uma mais r´apida, e poss´ıvel, convergˆencia. Aproximadamente duas centenas de experimentos foram realizados utilizando as matrizes da Cole¸c˜ao Harwell-Boeing [MCSD/ITL/NIST, 2003], que foram utilizados para mostrar o comportamento dos algoritmos adaptativos. Foram obtidos resultados muito bons; isso poder´a ser constatado atrav´es da an´alise das tabelas e tamb´em da observa ¸c˜ao dos gr´aficos expostos ao longo desse trabalho.