2 resultados para One-dimensional cutting stock problems
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Neste trabalho, estendemos, de forma analítica, a formulação LTSN à problemas de transporte unidimensionais sem simetria azimutal. Para este problema, também apresentamos a solução com dependência contínua na variável angular, a partir da qual é estabelecido um método iterativo de solução da equação de transporte unidimensional. Também discutimos como a formulação LTSN é aplicada na resolução de problemas de transporte unidimensionais dependentes do tempo, tanto de forma aproximada pela inversão numérica do fluxo transformado na variável tempo, bem como analiticamente, pela aplicação do método LTSNnas equações nodais. Simulações numéricas e comparações com resultados disponíveis na literatura são apresentadas.
Resumo:
Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.