4 resultados para Neuro-Fuzzy
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Este trabalho apresenta um método para detectar falhas no funcionamento de máquinas rotativas baseado em alterações no padrão de vibração do sistema e no diagnóstico da condição de operação, por Lógica Fuzzy. As modificações ocorridas são analisadas e servem como parâmetros para predizer falhas incipientes bem como a evolução destas na condição de operação, possibilitando tarefas de manutenção preditiva. Utiliza-se uma estrutura mecânica denominada de Sistema Rotativo (Figura 1), apropriada para as simulações das falhas. Faz-se a aquisição de dados de vibração da máquina usando-se um acelerômetro em chip biaxial de baixa potência. As saídas são lidas diretamente por um contador microprocessador não requerendo um conversor A/D. Um sistema de desenvolvimento para processamento digital de sinais, baseado no microprocessador TMS320C25, o Psi25, é empregado na aquisição dos sinais de vibração (*.dat), do Sistema Rotativo. Os arquivos *.dat são processados através da ferramenta matemática computacional Matlab 5 e do programa SPTOOL. Estabelece-se o padrão de vibração, denominado assinatura espectral do Sistema Rotativo (Figura 2) Os dados são analisados pelo sistema especialista Fuzzy, devidamente calibrado para o processo em questão. São considerados, como parâmetros para a diferenciação e tomada de decisão no diagnóstico do estado de funcionamento pelo sistema especialista, a freqüência de rotação do eixo-volante e as amplitudes de vibração inerentes a cada situação de avaria. As falhas inseridas neste trabalho são desbalanceamentos no eixovolante (Figura 1), através da inserção de elementos desbalanceadores. A relação de massa entre o volante e o menor elemento desbalanceador é de 1:10000. Tomando-se como alusão o conhecimento de especialistas no que se refere a situações normais de funcionamento e conseqüências danosas, utilizam-se elementos de diferentes massas para inserir falhas e diagnosticar o estado de funcionamento pelo sistema fuzzy, que apresenta o diagnóstico de formas qualitativa: normal; falha incipiente; manutenção e perigo e quantitativa, sendo desta maneira possível a detecção e o acompanhamento da evolução da falha.
Resumo:
Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas, deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuro-evolução é um dos métodos de aprendizado por reforço mais proeminentes. Em vista disto, neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Mais detalhadamente, desenvolveu-se uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração, além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Um ambiente de simulação foi desenvolvido e uma série de experimentos realizados com o objetivo de avaliar o modelo proposto e identificar quais os melhores valores para os diversos parâmetros do modelo. O modelo proposto foi aplicado no domínio das tarefas de perseguição-evasão.