7 resultados para Molfino, Miguel Angel
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Dissertacao essencialmente sobre derivacoes em aneis mostra que toda derivacao de jordan num anel primo e livre de 2-torcao e uma derivacao usual. prova que toda derivacao de hasse-schmidt-jordan definida num anel semiprimo e livre de 2-torcao e uma derivacao de hasse-schmidt. finalisa com derivacoes algebricas d definidas num anel primo r (c0m unidade) e com suas respectivas extensoes d* ao anel de quocientes (a direita) de martingale de r denotado por q. e demonstrado entao, uma equivalencia entre as r, q e c-algebricidades de d e d*, onde c denota o centroide estendido de r.
Resumo:
Nesta tese estudamos as derivações de ordem superior (DOS) em anéis não-comutativos. Inicialmente, mostramos que toda derivação tripla de Jordan de ordem superior em um anel semiprimo livre de 2-torção é uma DOS. Em particular, toda derivação de Jordan de ordem superior (DJOS) num anel deste tipo é uma DOS. Estendemos também o resultado a ideais de Lie U, provando que se R é um anel primo livre de 2-torção e D é uma DJOS de U em R onde U ct Z(R) é tal que U2E U para todo u E U, então D é uma DOS de U em R. Nestas condições, se U C Z(R), então o resultado não é válido. Estudamos ainda as DOS cujas componentes satisfazem relações de dependência linear sobre R ou Q (o anel de quocientes à direita de M artindale de R). Caracterizamos tais DOS, e mostramos que as relações de dependência linear são preservadas ao estendermos uma DOS de R a Q.
Resumo:
Este trabalho tem por objetivo estudar condições necessárias e sufi- cientes sobre um determinado anel R, não necessariamente comutativo, para que suas extensões polinomiais apresentem fatoração única. O estudo de tal propriedade é feito para anéis primos Noetherianos e para anéis primos não necessariamente Noetherianos.
Resumo:
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Vamos estudar a classe dos módulos distributivos, algumas de suas caracterizações e propriedades mais importantes. Concluiremos o trabalho com dois teoremas centrais. O primeiro deles trata da relação existente entre domínios distributivos e domínios de cadeia. O segundo teorema nos fornece um resultado importante sobre o radical primo de um anel distributivo à direita satisfazendo as condições de cadeia sobre os anuladores principais à direita.
Resumo:
o Pontal de Tapes está inserido dentro da Planície Costeira do Rio Grande do Sul e localiza-se ao noroeste da Laguna dos Patos. Até a década de 70, a área caracterizava-se por uma dinâmica regida pela ação dos ventos, das ondas e da corrente lagunar, compondo um ambiente caracterizado pela existência de banhados, dunas, bancos de areia, entre outras feições. Com a introdução de bosques de pinus, o Pontal passou por uma drástica alteração nos seus padrões eólicos de transporte e acumulação de areia. Este fato levou a área a uma nova dinâmica eólica e, por sua vez, morfológica. Neste estudo passamos a avaliar as conseqüências deste novo cenário. Para tal, monitoramos durante aproximadamente um ano (05.06.02 a 04.06.03) os parâmetros climáticos, bem como algumas dunas da área. A partir daí detectou-se a existência de quatro processos atuantes no ambiente: translado, bloqueio, captura e carreamento, sendo que os três últimos passaram a dominar o modelado do ambiente pós-pinus. A atuação desta nova dinâmica causou profundas alterações ao Pontal, como o desaparecimento de banhados e a descaracterização do sistema dunário.
Resumo:
Seja C uma co-álgebra. Consideremos o anel de convolução C*, que é a álgebra dual de C. Dado um co-módulo à direita (resp. à esquerda) sobre C é possível definir um C*-módulo à esquerda (resp. à direita) racional. Nesta tese, estudamos as noções correspondentes dos conceitos de primos, fortemente primos, semiprimos e fortemente semiprimos, que são encontrados na literatura em [2], [3], [4], [13] e [17], para co-módulos. A noção do conceito de primo é obtida também para co-álgebras. Mostramos que uma co-álgebra C é prima se, e somente se, C é uma co-álgebra simples.
Resumo:
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.