2 resultados para Modelos fuzzy set

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho foram realizadas classificações utilizando-se as bandas 1 a 5 e 7 dos sensores Landsat 5 TM (1987) e Landsat 7 ETM+ (2000). A caracterização espectral dos materiais foi realizada em laboratório utilizando um espectrorradiômetro, e através das bandas 1 a 5 e 7 dos sensores Landsat 5 TM (1987) e Landsat 7 ETM+ (2000). A transformação dos dados multiespectrais de imagens de sensoriamento remoto é uma maneira de reduzir o volume de dados através da identificação de classes de interesse numa imagem digital. No intuito de verificar condições de melhoramento na classificação de alvos urbanos em imagens digitais, identificados por procedimentos já conhecidos, como a classificação pela Máxima Verossimilhança, escolheu-se um classificador baseado na lógica fuzzy. O classificador utilizado foi o Fuzzy Set Membership classification - Fuzclass, que faz parte de um conjunto de classificadores não-rígidos disponíveis no programa Idrisi 32. Uma vez que informações sobre o desempenho de produtos deste classificador em áreas urbanas são escassas, foram conduzidos ensaios de comparação de resultados obtidos por este classificador com a verdade terrestre, representada por uma imagem de alta resolução espacial do satélite QuickBird. As áreas teste selecionadas desta imagem atendem ao critério de inalterância das condições de ocupação para o intervalo temporal considerado A comparação feita, permite concluir que o classificador apresenta limitações na classificação de áreas urbanas devido ao comportamento espectral semelhante dos materiais que fazem parte dessa cobertura. A utilização de uma classe única para identificar áreas impermeáveis foi a solução adotada para contornar este óbice. O emprego de áreas teste possibilitou acertar a escolha do grau de possibilidade de presença da classe no pixel (PPCP). Uma comparação entre os resultados apresentados na classificação de áreas impermeáveis, com base nos classificadores Máxima Verossimilhança e Fuzclass, demonstrou um desempenho melhor do classificador fuzzy, em função do nível de PPCP ajustado durante a análise comparativa Landsat e Quickbird nas áreas teste. Um procedimento alternativo de estimativa de áreas impermeáveis em bacias urbanas é apresentado no final.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.