2 resultados para MODELO BLACK-SCHOLES

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A partir de uma base de dados de ações da Telemar S.A., do período de 21/09/1998 a 21/10/2002, e de opções de 02/10/2000 a 21/10/2002, foi avaliado qual o previsor que prevê com maior precisão a volatilidade futura: o implícito ou o estatístico. A volatilidade implícita foi obtida por indução retroativa da fórmula de Black-Scholes. As previsões estatísticas da volatilidade foram obtidas pelos modelos de média móvel ponderada igualmente, modelo GARCH, EGARCH e FIGARCH. Os resultados das regressões do conteúdo de informação revelam que a volatilidade implícita ponderada possui substancial quantidade de informações sobre a volatilidade um passo à frente, pois apresenta o maior R2 ajustado de todas as regressões. Mesmo sendo eficiente, os testes indicam que ela é viesada. Porém, a estatística Wald revela que os modelos EGARCH e FIGARCH são previsores eficientes e não viesados da variação absoluta dos retornos da Telemar S.A. entre t e t + 1, apesar do R2 um pouco inferior a volatilidade implícita. Esse resultado a partir de parâmetros baseados em dados ex-post, de certo modo refuta a hipótese de que as opções possibilitam melhores informações aos participantes do mercado sobre as expectativas de risco ao longo do próximo dia Nas regressões do poder de previsão, que testam a habilidade da variável explicativa em prever a volatilidade ao longo do tempo de maturidade da opção, os resultados rejeitam a hipótese da volatilidade implícita ser um melhor previsor da volatilidade futura. Elas mostram que os coeficientes das volatilidades implícitas e incondicionais são estatisticamente insignificantes, além do R2 ajustado ser zero ou negativo. Isto, a princípio, conduz à rejeição da hipótese de que o mercado de opções é eficiente. Por outro lado, os resultados apresentados pelos modelos de volatilidade condicional revelam que o modelo EGARCH é capaz de explicar 60% da volatilidade futura. No teste de previsor eficiente e não viesado, a estatística Wald não rejeita esta hipótese para o modelo FIGARCH. Ou seja, um modelo que toma os dados ex-post consegue prever a volatilidade futura com maior precisão do que um modelo de natureza forward looking, como é o caso da volatilidade implícita. Desse modo, é melhor seguir a volatilidade estatística - expressa pelo modelo FIGARCH, para prever com maior precisão o comportamento futuro do mercado.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As redes neurais podem ser uma alternativa aos modelos paramétricos tradicionais para a precificação de opções quando a dinâmica do ativo primário não for conhecida ou quando a equação associada à condição de não-arbitragem não puder ser resolvida analiticamente. Este trabalho compara a performance do modelo tradicional de Black-Scholes e as redes neurais. Os modelos foram utilizados para precificar e realizar a cobertura dinâmica das opções de compra das ações de Telebrás. Os resultados obtidos sugerem que as redes neurais deveriam ser consideradas pelos operadores de opções como uma alternativa aos modelos tradicionais.