3 resultados para Linguagem natural

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O gerenciamento de redes exige dos administradores a disponibilidade de uma grande quantidade de informações sobre os seus equipamentos, as tecnologias envolvidas e os problemas associados a elas. Nesse cenário, administradores de redes devem, cada vez mais, aprofundar o seu conhecimento através de constante treinamento, até que estejam aptos a administrar uma rede de maneira mais eficiente e confiável. Alguns estudos têm sido feitos buscando integrar tecnologias de Inteligência Artificial na área de gerenciamento de redes. Abordagens utilizando sistemas multiagentes, agentes de interface e sistemas especialistas já foram utilizadas com o objetivo de facilitar a tarefa de gerenciamento de rede aos olhos do usuário. Os chatterbots representam um grande potencial para a tarefa de treinamento e gerenciamento de redes já que utilizam linguagem natural e são capazes de ser facilmente integrados em ambientes mais complexos. O principal objetivo deste trabalho é investigar o uso de chatterbots como uma ferramenta de gerenciamento utilizada por administradores menos treinados. O trabalho envolveu a adaptação do chatterbot ALICE para permitir o treinamento e a gerência de redes através da inclusão de módulos que permitem a monitoração de equipamentos de uma rede (através do protocolo SNMP) e módulos que permitam consultar e armazenar histórico de informações da mesma. Desta forma, a grande contribuição da arquitetura proposta é a de prover uma comunicação mais efetiva entre o administrador menos experiente e a rede, através do chatterbot assistente, que recebe consultas em linguagem natural, interpreta os dados coletados e expõe os conceitos envolvidos no processo de gerenciamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muitas abordagens para recuperação de informação (RI) assumem duas hipóteses: (i) cada termo de um documento é estatisticamente independente de todos os outros termos no texto, e (ii) métodos lingüísticos são de difícil aplicação nesta área. Contudo, há regularidades lingüísticas, produzidas pelas dependências entre termos, que precisam ser consideradas quando um texto é representado, e a representação de textos é crucial para aplicações que utilizam processamento da linguagem natural, como a RI. Um texto é mais do que uma simples seqüência de caracteres ou palavras. As palavras apresentam características morfológicas e relações de coesão que não podem ser esquecidas na descrição dos conceitos presentes no texto. Nesse sentido, um novo modelo com dependência de termos para a RI, denominado TR+, é proposto. Ele inclui: (i) nominalização, como processo de normalização lexical, e identificação de relações lexicais binárias (RLBs) e (ii) novas fórmulas para cálculo do peso das unidades de indexação (descritores). Essas fórmulas se baseiam no conceito de evidência, que leva em conta, além da freqüência de ocorrência, os mecanismos de coesão do texto. O modelo também inclui operadores Booleanos na consulta, para complementar a especificação da dependência de termos. Avaliações experimentais foram realizadas para demonstrar que (i) a nominalização apresenta melhores resultados em relação aos processos de normalização lexical usuais, (ii) a aquisição de informação lingüística, através de RLBs, e o uso de consultas Booleanas contribuem para a especificação de dependência de termos, e (iii) o cálculo da representatividade dos descritores baseado em evidência apresenta vantagens em relação ao cálculo baseado em freqüência de ocorrência. Os experimentos relatados indicam que esses recursos melhoram os resultados de sistemas de RI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tese apresenta a investigação de técnicas computacionais que permitam a simulação computacional da compreensão de frases faladas. Esta investigação é baseada em estudos neurocognitivos que descrevem o processamento do cérebro ao interpretar a audição de frases. A partir destes estudos, realiza-se a proposição do COMFALA, um modelo computacional para representação do processo de compreensão da fala. O COMFALA possui quatro módulos, correspondentes às fases do processamento cerebral: processamento do sinal de fala, análise sintática, análise semântica e avaliação das respostas das análises. Para validação do modelo são propostas implementações para cada módulo do COMFALA. A codificação do sinal se dá através das transformadas ondeletas (wavelets transforms), as quais permitem uma representação automática de padrões para sistemas conexionistas (redes neurais artificiais) responsáveis pela análise sintática e semântica da linguagem. Para a análise sintática foi adaptado um sistema conexionista de linguagem escrita. Por outro lado, o sistema conexionista de análise semântica realiza agrupamentos por características prosódicas e fonéticas do sinal. Ao final do processo, compara-se a saída sintática com a semântica, na busca de uma melhor interpretação da fala.