6 resultados para Landsat-5

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A utilização de programas de processamento de imagens digitais e de sistemas de informações geográficas que admitem a importação e exportação de inúmeros formatos de apresentação de dados, aliado a modernos equipamentos de computação, tem tornado a integração de dados, de diferentes sensores, um caminho padrão em Geociências, pela otimização da relação custo/tempo na execução de serviços de mapeamento. Neste contexto, esse trabalho resulta da análise da integração de dados de sensoriamento remoto e geofísica, com o objetivo de verificar sua aplicabilidade na identificação e caracterização litológica e estrutural de uma área-teste, localizada na Região de Quitéria -Várzea do Capivarita, no Estado do Rio Grande do Sul. A metodologia usada, em um primeiro momento, priorizou o processamento e análise individual de dados cartográficos, de imagens TM/LANDSAT-5 e dados de aeromagnetometria e aerogamaespectrometria nos canais Contagem Total (CT), Potássio (K), Tório (Th) e Urânio (U). Os dados foram, a seguir, convertidos para o formato digital na forma de imagens (“raster”) com resolução espacial de 30 x 30 m, a fim de permitir o cruzamento de informações através de técnicas de Processamento Digital de Imagens e de Sistemas de Informações Geográficas (SIG’s). A integração das imagens TM e geofísicas foi realizada com o uso da Transformação IHS, através da conversão das bandas TM para as componentes individuais I, H e S; substituindo-se a componente H, pela imagem geofísica no retorno ao espaço RGB. A análise dos produtos de sensoriamento remoto e geofísica obtidos nessa pesquisa, permitiram identificar os Domínios Morfoestruturais; identificar e delimitar as diferentes Unidades Fotolitológicas; reconhecer os principais sistemas estruturais a partir da extração e análise de lineamentos; obter informações do padrão de relevo magnético; e, principalmente, a geração de imagens temáticas de teores de radioelementos com a identificação de áreas promissoras de mineralizações. Os resultados comprovam a eficiência do emprego de técnicas de integração de dados digitais, via computador, tanto para fins de mapeamento litoestrutural, como em caráter prospectivo, em serviços geológicos de grandes áreas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As técnicas de sensoriarnento remoto e geoprocessamento são fundamentais para processamento e integração de dados de mapeamento geológico/geotécnico, principalmente estudos de gerenciamento e planejamento. A área estudada compreende o município de Três Cachoeiras. Litoral Norte do Rio Grande do Sul o qual inclui-se na "Reserva da Biosfera da Mata Atlântica". O município tem st: deparado com problemas de localização de sitios adequados à disposição final dos resíduos sólidos. bem como o assentamento de loteamentos residenciais e industriais, localização de jazidas de extração de material para construção, fontes de abastecimento de água e necessidade de criação de áreas de preservação ambiental. O objetivo deste trabalho foi produzir mapeamentos da área em questão, através da pesquisa geológico-geotécnica desenvolvida com emprego de imagens de satélite e fotografias aéreas, em que as informações foram cruzadas no SIG. Baseado nisto, investigaram-se os aspectos acima mencionados. a partir de uma contribuição geológico/geotécnica ao município, incluindo-se levantamento de campo, fotointerpretação, processamento e classificação de imagens do município de Três Cachoeiras, sendo os dados integrados num sistema de geoprocessamento. Utilizando-se cartas planialtimétricas, fotografias aéreas e imagem de satélite LANDSAT TM5. foram criados planos de informação como o limite da área estudada, a estrutura viária municipal, a delimitação de reservas ecológicas baseadas na legislação ambiental vigente e, por meio do modelo numérico do terreno, a carta de declividade. A fotointerpretação gerou planos de rede de drenagem, litológica. morfoestruturas e formações superficiais. Os dados de campo. sobrepostos às litológicas obtidas por fotointerpretação, produziram a carta litológica. No tratamento das imagem, foram gerados produtos com contraste, operações entre bandas, filtragens e análise de componentes principais, os quais contribuíram parira classificação da imagem e resultando nos planos de rochas/solos e cobertura/uso do solo (carta de uso atual do solo). O cruzamento destas informações permitiu a obtenção da carta de formações superficiais, lidrogeológica que, juntamente com as cartas litológica, declividades e uso atual do solo distribuíram os atributos do meio físico em planos elaborados por novos cruzamentos, que satisfazem o objetivo do estudo, sendo estes planos o produto final, ou seja, cartas de recomendação: a extração de materiais para construção civil; a implantação de obras de infraestrutura; a disposição de resíduos sólidos e loteamentos; geotécnica à agricultura; à implantação de áreas destinadas à preservação ambienta1 e recuperação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente, pesquisadores das mais diversas áreas, tais como: Geologia, Física, Cartografia, Oceanografia, entre outras, utilizam imagens de satélite como uma fonte valiosa para a extração de informações sobre a superfície terrestre. Muitas vezes, a análise (classificação) destas imagens é realizada por métodos tradicionais sejam eles supervisionados (como o Método de Máxima Verossimilhança Gaussiana) ou nãosupervisionados (como o Método de Seleção pelo Pico do Histograma). Entretanto, pode-se utilizar as Redes Neurais Artificiais como uma alternativa para o aumento da acurácia em classificações digitais. Neste trabalho, utilizou-se imagens multi-espectrais do satélite LANDSAT 5-TM para a identificação de espécies vegetais (Mata Nativa, Eucalyptus e Acácia) em uma região próxima aos municípios de General Câmara, Santo Amaro e Taquari, no Estado do Rio Grande do Sul, Brasil. Comparou-se qualitativamente e quantitativamente os resultados obtidos pelo método de Máxima Verossimilhança Gaussiana e por uma Rede Neural Artificial Multinível com BackPropagation na classificação da área de estudo. Para tanto, parte desta área foi mapeada através de uma verificação de campo e com o auxílio de classificadores nãosupervisionados (Kohonen, que é uma Rede Neural, e o método de Seleção pelo Pico do Histograma). Com isto, foi possível coletar dois conjuntos de amostras, sendo que um deles foi utilizado para o treinamento dos métodos e o outro (conjunto de reconhecimento) serviu para a avaliação das classificações obtidas. Após o treinamento, parte da área de estudo foi classificada por ambos os métodos. Em seguida, os resultados obtidos foram avaliados através do uso de Tabelas de Contingência, considerando um nível de significância de 5%. Por fim, na maior parte dos testes realizados, a Rede Neural Artificial Multinível com BackPropagation apresentou valores de acurácia superiores ao Método de Máxima Verossimilhança Gaussiana. Assim, com este trabalho observou-se que não há diferença significativa de classificação para as espécies vegetais, ao nível de 5%, para a área de estudo considerada, na época de aquisição da imagem, para o conjunto de reconhecimento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imagens georreferenciadas LANDSAT 5 TM da região da Mina Leão II, situada na Depressão Central do Estado do Rio Grande do Sul, foram processadas e classificadas digitalmente com objetivo de gerar o mapa de uso e cobertura do solo. Destas imagens, a drenagem foi extraída na forma vetorial, com o objetivo de determinar a faixa de proteção em torno dela. Dados topográficos plani-altimétricos analógicos foram tratados gerando o modelo digital do terreno e mapas de declividades. Foram definidos critérios para selecionar sítios adequados à colocação de rejeitos de carvão. Imagens de uso e cobertura do solo, declividades, rede de drenagem, litologias, estruturas geológicas, e distância a partir da boca da mina foram transformadas em sete fatores. Três fatores são absolutos ou restrições: zona de proteção da drenagem, zona de restrição em torno dos falhamentos e declividades superiores a 8%. Os restantes, são fatores relativos: uso e cobertura do solo reclassificado, declividade inferior a 8%, substrato litológico e distância a partir da mina. Aos quatro fatores relativos foi atribuída uma ponderação pareada. Através das ferramentas computacionais de apoio à decisão, em um Sistema de Informação Geográfica, os oito diferentes fatores foram cruzados, resultando um mapa temático que localiza e classifica sítios para a locação de rejeitos de carvão. As classes identificadas foram: área de restrição, péssima, regular, boa e ótima. O mapa de uso e cobertura do solo foi reclassificado em função de ser elaborada uma imagem de superfície de atrito, a partir do local da boca da mina, com a finalidade de se projetar vias de menor custo, desde a mina até a BR290 e a um porto situado no rio Jacuí. Dados sobre a espessura da camada de carvão inferior, "I", de uma campanha de sondagem de 182 furos, foram tratados por metodologia de geoestatística. Estudos de estatística descritiva, análise de continuidade espacial e estimação foram realizados, culminando com a cubagem da camada na área de estudo. Foi escolhido o processo de interpolação através da krigagem ordinária. A tonelagem da camada de carvão "I" foi estimada na ordem de 274.917.234 a 288.046.829 t. com nível de confiança de 95%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho foram realizadas classificações utilizando-se as bandas 1 a 5 e 7 dos sensores Landsat 5 TM (1987) e Landsat 7 ETM+ (2000). A caracterização espectral dos materiais foi realizada em laboratório utilizando um espectrorradiômetro, e através das bandas 1 a 5 e 7 dos sensores Landsat 5 TM (1987) e Landsat 7 ETM+ (2000). A transformação dos dados multiespectrais de imagens de sensoriamento remoto é uma maneira de reduzir o volume de dados através da identificação de classes de interesse numa imagem digital. No intuito de verificar condições de melhoramento na classificação de alvos urbanos em imagens digitais, identificados por procedimentos já conhecidos, como a classificação pela Máxima Verossimilhança, escolheu-se um classificador baseado na lógica fuzzy. O classificador utilizado foi o Fuzzy Set Membership classification - Fuzclass, que faz parte de um conjunto de classificadores não-rígidos disponíveis no programa Idrisi 32. Uma vez que informações sobre o desempenho de produtos deste classificador em áreas urbanas são escassas, foram conduzidos ensaios de comparação de resultados obtidos por este classificador com a verdade terrestre, representada por uma imagem de alta resolução espacial do satélite QuickBird. As áreas teste selecionadas desta imagem atendem ao critério de inalterância das condições de ocupação para o intervalo temporal considerado A comparação feita, permite concluir que o classificador apresenta limitações na classificação de áreas urbanas devido ao comportamento espectral semelhante dos materiais que fazem parte dessa cobertura. A utilização de uma classe única para identificar áreas impermeáveis foi a solução adotada para contornar este óbice. O emprego de áreas teste possibilitou acertar a escolha do grau de possibilidade de presença da classe no pixel (PPCP). Uma comparação entre os resultados apresentados na classificação de áreas impermeáveis, com base nos classificadores Máxima Verossimilhança e Fuzclass, demonstrou um desempenho melhor do classificador fuzzy, em função do nível de PPCP ajustado durante a análise comparativa Landsat e Quickbird nas áreas teste. Um procedimento alternativo de estimativa de áreas impermeáveis em bacias urbanas é apresentado no final.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os processamentos de imagens orbitais efetuados através de técnicas de sensoriamento remoto geraram informações qualitativas de natureza textural (morfo-estruturas). Estas permitiram (1) o reconhecimento de áreas com diferentes padrões estruturais tendo diferentes potencialidades para a prospecção de fluorita, (2) a identificação de novos lineamentos estruturais potencialmente favoráveis à mineralização e (3) evidenciaram prolongamentos extensos para as principais estruturas mineralizadas, (4) às quais se associam um grande número de estruturas, antes desconhecidas, com grande potencial prospectivo. O aprimoramento de técnicas de classificação digital sobre produtos de razões de bandas e análise por componentes principais permitiu identificar a alteração hidrotermal associada às estruturas, incorporando novos critérios para a prospecção de fluorita. Buscando-se quantificar os dados de alteração hidrotermal, foi efetuada a análise espectrorradiométrica das rochas do distrito fluorítico. Integrando estas informações com dados TM LANDSAT 5, em nível de reflectância, obteve-se a classificação espectral das imagens orbitais, o que permitiu a identificação de estruturas menores com um detalhe nunca antes obtido. Os processamentos de dados aerogeofísicos forneceram resultados sobre estruturas (magnetometria) e corpos graníticos afetados por alteração hidrotermal (aerogamaespectrometria). Estes produtos foram integrados com dados TM LANDSAT 5 associando o atributo textural da imagem orbital ao comportamento radiométrico das rochas. Diagnosticou-se o lineamento Grão-Pará como o principal prospecto do distrito. E levantaram-se uma série de dados sobre a compartimentação tectônica da região, a zonação de fácies das rochas graníticas (rocha fonte do flúor) e as alterações hidrotermais associadas ao magmatismo granítico. Isto permitiu a compreensão da distribuição regional dos depósitos de fluorita, adicionando-se um novo critério à prospecção de fluorita, a relação espacial entre a mineralização e a rocha fonte de F. Esta última corresponde à fácies granítica da borda do Maciço Pedras Grandes.