2 resultados para LOW COST AIRLINES

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the ever increasing demands for high complexity consumer electronic products, market pressures demand faster product development and lower cost. SoCbased design can provide the required design flexibility and speed by allowing the use of IP cores. However, testing costs in the SoC environment can reach a substantial percent of the total production cost. Analog testing costs may dominate the total test cost, as testing of analog circuits usually require functional verification of the circuit and special testing procedures. For RF analog circuits commonly used in wireless applications, testing is further complicated because of the high frequencies involved. In summary, reducing analog test cost is of major importance in the electronic industry today. BIST techniques for analog circuits, though potentially able to solve the analog test cost problem, have some limitations. Some techniques are circuit dependent, requiring reconfiguration of the circuit being tested, and are generally not usable in RF circuits. In the SoC environment, as processing and memory resources are available, they could be used in the test. However, the overhead for adding additional AD and DA converters may be too costly for most systems, and analog routing of signals may not be feasible and may introduce signal distortion. In this work a simple and low cost digitizer is used instead of an ADC in order to enable analog testing strategies to be implemented in a SoC environment. Thanks to the low analog area overhead of the converter, multiple analog test points can be observed and specific analog test strategies can be enabled. As the digitizer is always connected to the analog test point, it is not necessary to include muxes and switches that would degrade the signal path. For RF analog circuits, this is specially useful, as the circuit impedance is fixed and the influence of the digitizer can be accounted for in the design phase. Thanks to the simplicity of the converter, it is able to reach higher frequencies, and enables the implementation of low cost RF test strategies. The digitizer has been applied successfully in the testing of both low frequency and RF analog circuits. Also, as testing is based on frequency-domain characteristics, nonlinear characteristics like intermodulation products can also be evaluated. Specifically, practical results were obtained for prototyped base band filters and a 100MHz mixer. The application of the converter for noise figure evaluation was also addressed, and experimental results for low frequency amplifiers using conventional opamps were obtained. The proposed method is able to enhance the testability of current mixed-signal designs, being suitable for the SoC environment used in many industrial products nowadays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.