61 resultados para Inteligência artificial
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
A comparação de dados de mercado é o método mais empregado em avaliação de imóveis. Este método fundamenta-se na coleta, análise e modelagem de dados do mercado imobiliário. Porém os dados freqüentemente contêm erros e imprecisões, além das dificuldades de seleção de casos e atributos relevantes, problemas que em geral são solucionados subjetivamente. Os modelos hedônicos de preços têm sido empregados, associados com a análise de regressão múltipla, mas existem alguns problemas que afetam a precisão das estimativas. Esta Tese investigou a utilização de técnicas alternativas para desenvolver as funções de preparação dos dados e desenvolvimento de modelos preditivos, explorando as áreas de descobrimento de conhecimento e inteligência artificial. Foi proposta uma nova abordagem para as avaliações, consistindo da formação de uma base de dados, ampla e previamente preparada, com a aplicação de um conjunto de técnicas para seleção de casos e para geração de modelos preditivos. Na fase de preparação dos dados foram utilizados as técnicas de regressão e redes neurais para a seleção de informação relevante, e o algoritmo de vizinhança próxima para estimação de valores para dados com erros ou omissões. O desenvolvimento de modelos preditivos incluiu as técnicas de regressão com superficies de resposta, modelos aditivos generalizados ajustados com algoritmos genéticos, regras extraídas de redes neurais usando lógica difusa e sistemas de regras difusas obtidos com algoritmos genéticos, os quais foram comparados com a abordagem tradicional de regressão múltipla Esta abordagem foi testada através do desenvolvimento de um estudo empírico, utilizando dados fornecidos pela Prefeitura Municipal de Porto Alegre. Foram desenvolvidos três formatos de avaliação, com modelos para análise de mercado, avaliação em massa e avaliação individual. Os resultados indicaram o aperfeiçoamento da base de dados na fase de preparação e o equilíbrio das técnicas preditivas, com um pequeno incremento de precisão, em relação à regressão múltipla.Os modelos foram similares, em termos de formato e precisão, com o melhor desempenho sendo atingido com os sistemas de regras difusas.
Resumo:
Uma atividade com a magnitude da avicultura, que usa equipamentos de última geração e serviços atualizados, é levada, na maioria dos casos, a tomar decisões que envolvem todos aspectos de produção, apoiada em critérios subjetivos. A presente tese objetivou estudar a utilização das redes neurais artificiais na estimação dos parâmetros de desempenho de matrizes pesadas, pertencentes a uma integração avícola sul-brasileira. Foram utilizados os registros de 11 lotes em recria, do período compreendido entre 09/11/97 a 10/01/99 e de 21 lotes em produção, do período compreendido entre 26/04/98 a 19/12/99, para a análise por redes neurais artificiais. Os dados utilizados corresponderam a 273 linhas de registros semanais, do período de recria e 689 linhas de registros semanais, do período de produção. Os modelos de redes neurais foram comparados e selecionados como melhores, baseados no coeficiente de determinação múltipla (R2), Quadrado Médio do Erro (QME), bem como pela análise de gráficos, plotando a predição da rede versus a predição menos o real (resíduo). Com esta tese foi possível explicar os parâmetros de desempenho de matrizes pesadas, através da utilização de redes neurais artificiais. A técnica permite a tomada de decisões por parte do corpo técnico, baseadas em critérios objetivos obtidos cientificamente. Além disso, este método permite simulações das conseqüências de tais decisões e fornece a percentagem de contribuição de cada variável no fenômeno em estudo.
Resumo:
A inteligência tem sido estudada como fruto de evolução biológica. Nas últimas centenas de milhões de anos, a inteligência tem evoluído juntamente com a biologia. Essa conclusão pode ser obtida ao analisar o comportamento das criaturas que emergiram assim como a sua capacidade de armazenar e processar informação. A evolução gerou criaturas possuidoras de cérebros com grande poder de adaptação. Partindo-se do pressuposto que a inteligência humana é resultado de um processo evolutivo paulatino que ocorreu ao longo de milhões de anos, faz sentido tentar repetir os mesmos passos dados ao longo da evolução da inteligência artificialmente. A evolução oferece uma rota que vai desde tipos de mentes simples até tipos de mentes mais complexas apresentando um caminho de características e capacidades que evoluíram ao longo do tempo. No presente trabalho, acredita-se que esse caminho seguido pela evolução é uma boa fonte de inspiração para a geração de inteligência artificial. De acordo com Dennett, um tipo de mente que apareceu ao longo da evolução é a mente popperiana que aprende as regras do ambiente e tem a capacidade de imaginar ou planejar estados futuros permitindo que ela se adapte com facilidade a novas e inesperadas situações. Sendo assim, modela-se e implementa-se um agente popperiano capaz de aprender as regras do seu ambiente e planejar ações futuras baseando-se no seu aprendizado. Por fim, são implementados dois protótipos de agentes popperianos para resolver problemas distintos e observa-se a capacidade dos agentes popperianos em se adaptar às condições do seu meio para alcançar seus objetivos.
Resumo:
Este estudo objetivou demonstrar que é possível explicar os fenômenos que ocorrem na criação de frangos de corte através de redes neurais artificiais. A estatística descritiva e a diferença entre as médias das variáveis dos dados iniciais foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foi utilizada uma série histórica de dados de produção de frangos de corte, obtidos nos anos de 2001 e 2002, fornecidos por uma Integração Avícola do Rio Grande do Sul, contendo informações de 1.516 criadores com lotes alojados em 2001 e 889 criadores com lotes alojados em 2002. Nos arquivos estavam registrados, para cada lote, suas variáveis de produção, tais como número do lote, data do alojamento, data do abate, idade ao abate, número de pintos alojados, quilogramas de ração consumidos, quilogramas de frangos produzidos, número de aves abatidas, custo do frango produzido, mortalidade, peso médio, ganho de peso diário, índice de conversão alimentar, índice de eficiência, quilogramas líquido de frangos, quilogramas de ração inicial, quilogramas de ração crescimento, quilogramas de ração abate, além de outros. Para a construção das redes neurais artificiais foi utilizado o programa computacional NeuroShell®Predictor, desenvolvido pela Ward Systems Group. Ao programa foi identificado as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e a variável de “saída” aquela a ser predita. Para o treinamento das redes foram usados 1.000 criadores do banco de dados do alojamento de frangos de corte de 2001. Os restantes 516 criadores de 2001 e todos os 889 criadores de 2002 serviram para a validação das predições, os quais não participaram da etapa de aprendizagem, sendo totalmente desconhecidos pelo programa. Foram gerados 20 modelos na fase de treinamento das redes neurais artificiais, com distintos parâmetros de produção ou variáveis (saídas). Em todos estes modelos, as redes neurais artificiais geradas foram bem ajustadas apresentando sempre, um Coeficiente de Determinação Múltipla (R²) elevado e o menor Quadrado Médio do Erro (QME). Ressalta-se que o R² perfeito é 1 e um coeficiente muito bom deve estar próximo de 1. Todos os 20 modelos, quando validados com os 516 lotes de 2001 e com 889 de 2002, apresentaram também Coeficientes de Determinação Múltipla (R²) elevados e muito próximos de 1, além de apresentarem o Quadrado Médio do Erro (QME) e Erro Médio reduzidos. Foi comprovado não haver diferenças significativas entre as médias dos valores preditos e as médias dos valores reais, em todas as validações efetuadas nos lotes abatidos em 2001 e em 2002, quando aplicados os 20 modelos de redes neurais gerados. Como conclusão, as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos com a produção industrial de frangos de corte. A técnica oferece critérios objetivos, gerados cientificamente, que embasarão as decisões dos responsáveis pela produção industrial de frangos de corte.Também permite realizar simulações e medir a contribuição de cada variável no fenômeno em estudo.
Resumo:
O objetivo deste trabalho é apresentar a base teórica para o problema de aprendizagem através de exemplos conforme as ref. [14], [15] e [16]. Aprender através de exemplos pode ser examinado como o problema de regressão da aproximação de uma função multivaluada sobre um conjunto de dados esparsos. Tal problema não é bem posto e a maneira clássica de resolvê-lo é através da teoria de regularização. A teoria de regularização clássica, como será considerada aqui, formula este problema de regressão como o problema variacional de achar a função f que minimiza o funcional Q[f] = 1 n n Xi=1 (yi ¡ f(xi))2 + ¸kfk2 K; onde kfk2 K é a norma em um espa»co de Hilbert especial que chamaremos de Núcleo Reprodutivo (Reproducing Kernel Hilbert Spaces), ou somente RKHS, IH definido pela função positiva K, o número de pontos do exemplo n e o parâmetro de regularização ¸. Sob condições gerais a solução da equação é dada por f(x) = n Xi=1 ciK(x; xi): A teoria apresentada neste trabalho é na verdade a fundamentação para uma teoria mais geral que justfica os funcionais regularizados para a aprendizagem através de um conjunto infinito de dados e pode ser usada para estender consideravelmente a estrutura clássica a regularização, combinando efetivamente uma perspectiva de análise funcional com modernos avanços em Teoria de Probabilidade e Estatística.
Resumo:
O contexto desta tese é a Inteligência Artificial aplicada à Educação, especificamente a área dos Sistemas Tutores Inteligentes (STI). Apesar das características multidisciplinares e interdisciplinares, a preocupação maior do trabalho se dá quanto aos aspectos computacionais. A multidisciplinaridade está na relação entre os aspectos educacionais, filosóficos e psicológicos inerentes a toda construção de um software educacional, e a interdisciplinaridade acontece no relacionamento da IA com a Informática na Educação. Esta tese propõe o uso de aspectos afetivos como apoio à decisão de ação por parte de um STI. As nossas hipóteses fundamentais são: um sistema de ensino e aprendizagem computacional deve levar em consideração fatores afetivos tornando mais flexível a interação; e a arquitetura de um sistema computacional de interação em tempo real com agentes humanos deve prever explicitamente, em sua arquitetura básica, as crenças e o raciocínio afetivos. Para demonstrar essas idéias, foi definida uma arquitetura para apoiar um STI de modo a reconhecer alguns fatores afetivos, representativos de estratégias de ação de agentes humanos em interação com sistemas. Esse reconhecimento é realizado através de construções retiradas dos comportamentos observáveis do agente humano em contextos determinados. A arquitetura prevê um Sistema Multiagente para executar a percepção de fatores afetivos e da conduta do aluno em interação e de um agente pedagógico, representando o tutor. O agente tutor é modelado através de estados mentais e é responsável pelo raciocínio de alto nível. O modelo computacional de agentes de Móra [MÓR2000] foi utilizado para implementar o “kernel cognitivo” (termo cunhado por Móra e Giraffa [GIR99] que designa a parte responsável pela deliberação). O “kernel cognitivo” decide que ações tomar para um conjunto de características de uma avaliação pedagógica. A utilização de fatores afetivos e da avaliação cognitiva de situações emocionais permite a flexibilização das estratégias quanto à adaptabilidade a agentes humanos. Particularmente, foi adotado o enfoque cognitivo para análise de situações, baseado em teorias cognitivistas sobre emoções. O uso de tecnologia multiagente, no enfoque mentalístico, especificamente BDI (Belief, Desire, Intention) e da ferramenta X-BDI, permite a formalização e construção de um tutor atuante na avaliação pedagógica. A modelagem do aluno passa a ser constituída de aspectos qualitativos e quantitativos. Estudos de casos são apresentados, em situações que consideram os fatores afetivos e nas mesmas situações sem estas considerações. As decisões do tutor para agir são analisadas e confrontadas. Os resultados mostram um impacto positivo na adaptabilidade e ação pedagógica do tutor, sendo coerente com as teorias modernas [SAL97],[DAM2000] sobre as emoções que as consideram partes fundamentais para agir. A maior contribuição desta tese está na agregação de raciocínio sobre a afetividade envolvida em situações de ensino aprendizagem de agentes humanos e artificiais e avança dentro da perspectiva de pesquisa do grupo de IA da UFRGS, quanto ao desenvolvimento de Ambientes de Ensino e Aprendizagem modelados com tecnologia multiagente, com o uso da metáfora de estados mentais.
Resumo:
O interesse de pesquisa da comunidade de Inteligência Artificial em Sistemas Multiagentes tem gerado o crescimento da utilização de técnicas de agentes nas mais diversas áreas da ciência da computação. Isso ocorre, principalmente, devido à variedade de aplicações em que esses sistemas podem ser usados, como por exemplo: jogos de computadores, interfaces adaptativas, simulação e controle de processos industriais. The Robot World Cup Initiative (RoboCup) é uma tentativa de estimular a área de Inteligência Artificial e, principalmente de Sistemas Multiagentes, por promover um problema padrão, jogar futebol, onde uma ampla cadeia de tecnologias podem ser integradas, examinadas e comparadas. A utilização do ambiente da RoboCup para a simulação de uma partida de futebol (simulador Soccerserver) permite a avaliação de diferentes técnicas de Sistemas Multiagentes (planejamento de estratégias, conhecimento em tempo real, colaboração de agentes, princípios de agentes autônomos, entre outros) e estimula as pesquisas, investigações e testes que possibilitem a construção gradativa de agentes avançados. O presente trabalho tem por objetivo o desenvolvimento de um time de futebol para o simulador Soccerserver. A idéia principal é desenvolver agentes jogadores que demonstrem um nível considerável de competência para a realização de suas tarefas, como percepção, ação, cooperação, estratégias pré-definidas, decisão e previsão. Inicialmente, apresenta-se uma visão geral sobre Inteligência Artificial Distribuída e sobre o simulador Soccerserver, pré-requisitos para o restante do trabalho. A seguir, é realizado um estudo sobre algumas arquiteturas de agentes (clientes) do Soccerserver. A arquitetura proposta na dissertação, suas principais características e a sua materialização em um protótipo desenvolvido correspondem à parte principal do trabalho. Finalmente são apresentados os testes realizados e as conclusões do trabalho.
Resumo:
Atualmente, o enorme volume de informações armazenadas em bancos de dados de organizações ultrapassa a capacidade dos tradicionais métodos de análise dos dados baseados em consultas, pois eles se tornaram insuficientes para analisar o conteúdo quanto a algum conhecimento implícito e importante na grande massa de dados. A partir disto, a mineração de dados tem-se transformado em um tópico importante de pesquisa, porque provê um conjunto de técnicas e ferramentas capazes de inteligente e automaticamente assistir o ser humano na análise de uma enorme quantidade de dados à procura de conhecimento relevante e que está encoberto pelos demais dados. O presente trabalho se propõe a estudar e a utilizar a mineração de dados considerando os aspectos temporais. Através de um experimento realizado sobre os dados da Secretaria da Saúde do Estado do Rio Grande do Sul, com a aplicação de uma metodologia para a mineração de dados temporais, foi possível identificar padrões seqüenciais nos dados. Este experimento procurou descobrir padrões seqüenciais de comportamento em internações médicas, objetivando obter modelos de conhecimento dos dados temporais e representá-los na forma de regras temporais. A descoberta destes padrões seqüenciais permitiu comprovar tradicionais comportamentos dos tratamentos médicos efetuados, detectar situações anômalas, bem como, acompanhar a evolução das doenças existentes.
Resumo:
O objetivo do presente trabalho é realizar a concepção de um sistema para a aprendizagem de demonstrações da Geometria Euclidiana Plana e a implementação de um protótipo deste sistema, denominado LEEG - Learning Environment on Euclidean Geometry, desenvolvido para validar as idéias utilizadas em sua especificação. Nos últimos anos, tem-se observado uma crescente evolução dos sistemas de ensino e aprendizagem informatizados. A preocupação com o desenvolvimento de ambientes cada vez mais eficientes, tanto do ponto de vista computacional quanto pedagógico, tem repercutido em um salto de qualidade dos software educacionais. Tais sistemas visam promover, auxiliar e motivar a aprendizagem das mais diversas áreas do conhecimento, utilizando técnicas de Inteligência Artificial para se aproximarem ao máximo do comportamento de um tutor humano que se adapte e atenda às necessidades de cada aluno. A Geometria pode ser vista sob dois aspectos principais: considerada como uma ciência que estuda as representações do plano e do espaço e considerada como uma estrutura lógica, onde a estrutura matemática é representada e tratada no mais alto nível de rigor e formalismo. Entretanto, o ensino da Geometria, nos últimos anos, abandonou quase que totalmente sua abordagem dedutiva. Demonstrações de teoremas geométricos não são mais trabalhadas na maioria das escolas brasileiras, o que repercute em um ensino falho da Matemática, que não valoriza o desenvolvimento de habilidades e competências relacionadas à experimentação, observação e percepção, realização de conjecturas, desenvolvimento de argumentações convincentes, entre outras. Levando-se em conta este cenário, desenvolveu-se o LEEG, um sistema para a aprendizagem de demonstrações geométricas que tem como objetivo auxiliar um aprendiz humano na construção de demonstrações da Geometria Euclidiana Plana. O sistema foi modelado sobre uma adaptação do protocolo de aprendizagem MOSCA, desenvolvido para suportar ambientes de ensino informatizados, cuja aprendizagem é baseada na utilização de exemplos e contra-exemplos. Este protocolo propõe um ambiente de aprendizagem composto por cinco agentes, dentre os quais um deles é o aprendiz e os demais assumem papéis distintos e específicos que completam um quadro de ensino-aprendizagem consistente. A base de conhecimento do sistema, que guarda a estrutura lógica-dedutiva de todas as demonstrações que podem ser submetidas ao Aprendiz, foi implementada através do modelo de autômatos finitos com saída. A utilização de autômatos com saída na aplicação de modelagem de demonstrações dedutivas foi extremamente útil por permitir estruturar os diferentes raciocínios que levam da hipótese à tese da proposição de forma lógica, organizada e direta. As demonstrações oferecidas pelo sistema são as mesmas desenvolvidas por Euclides e referem-se aos Fundamentos da Geometria Plana. São demonstrações que priorizam e valorizam a utilização de objetos geométricos no seu desenvolvimento, fugindo das demonstrações que apelam para a simples manipulação algébrica e que não oferecem uma construção significativa do ponto de vista da Geometria. Porém, mesmo sendo consideradas apenas as demonstrações contidas em Elements, todos os diferentes raciocínios para uma mesma demonstração são aceitos pelo sistema, dando liberdade ao aprendiz no processo de construção da demonstração.
Resumo:
A evolução da Informática na Educação exige ambientes de ensino capazes de se adaptarem ao contexto de acordo com as características individuais do aluno, permitindo interatividade, e que gerem um diagnóstico do comportamento desse aluno. Com base nestes argumentos, o objetivo deste trabalho é propor um sistema de diagnóstico independente do domínio, capaz de analisar o comportamento do aluno em cursos de Ensino a Distância. O professor organiza o material em estruturas de tarefas TÆMS (uma linguagem independente do domínio para descrição de planos de resolução de tarefas), gerando uma biblioteca de planos que deverão ser executados pelo aluno. As informações referentes à navegação do aluno pelo material são gravadas em um log. O processo de diagnóstico ocorre através do confronto entre as informações do log e os planos gerados pelo professor (esta comparação é baseada em um modelo causal geral que pode ser utilizado para diagnosticar diferenças entre quaisquer estruturas TÆMS). Se forem detectadas divergências no processo de diagnóstico, o sistema gerará um arquivo texto contendo os sintomas detectados e as possíveis causas para que estes tenham ocorrido.
Resumo:
Este trabalho propõe a definição de um Sistema de Valores de Troca para modelar as trocas sociais entre agentes em sociedade artificiais. Esse sistema é baseado na Teoria das Trocas de Valores de Jean Piaget e é composto por uma algebrá de valores de troca, que indica como esses valores devem ser representados e manipulados, por um mecanismo de raciocínio social baseado em vaores de troca e por estruturas capazes de armazenar e manipular tais valores. Nesse sistema, os valores de troca são vistos tanto como elementos motivadores das interações quanto como elementos reguladores responsáveis pelo equilíbrio e continuidade das trocas sociais. Acredita-se que o istema proposto é capaz de melhorar a modelagem das interações. É mostrado, também, como o sistema de valores proposto pode ser integrado com modelos de interação existentes na literatura de sistemas multiagente; Para isso, foram escolhidos dosi modelos práticos de organização dinâmica - o Redes de Contrato e o Modelo de Coalizões Baseadas em Dependências. Para demonstrar comomo o sistema de valores pode ser aplicado na modelagem e na simuulação de situações reais, é descrito um cenário para experimentação, no qual o sistema proposto é utilizado para modelar, de forma simplificada, o processo de lobby atrtavés de contribuições para campanhas políticas. Com este cenário pretende-se observar, além da dinâmica dos valores de troca, a capacidade do sistema em modelar caraterísticas mais subjetivas das interações (normalmente observadas nas relações humanas), e, ao tempo tempo, prover elementos reguladores, instrurmentos para a continuidade das interações e trocas sociais.
Resumo:
A Descoberta de Conhecimento em Banco de Dados (DCBD) é uma nova área de pesquisa que envolve o processo de extração de conhecimento útil implícito em grandes bases de dados. Existem várias metodologias para a realização de um processo de DCBD cuja essência consiste basicamente nas fases de entendimento do domínio do problema, pré-processamento, mineração de dados e pós-processamento. Na literatura sobre o assunto existem muitos trabalhos a respeito de mineração de dados, porém pouco se encontra sobre o processo de pré-processamento. Assim, o objetivo deste trabalho consiste no estudo do pré-processamento, já que é a fase que consome a maior parte do tempo e esforço de todo o processo de DCBD pois envolve operações de entendimento, seleção, limpeza e transformação de dados. Muitas vezes, essas operações precisam ser repetidas de modo a aprimorar a qualidade dos dados e, conseqüentemente, melhorar também a acurácia e eficiência do processo de mineração. A estrutura do trabalho abrange cinco capítulos. Inicialmente, apresenta-se a introdução e motivação para trabalho, juntamente com os objetivos e a metodologia utilizada. No segundo capítulo são abordadas metodologias para o processo de DCBD destacando-se CRISP-DM e a proposta por Fayyad, Piatetsky-Shapiro e Smyth. No terceiro capítulo são apresentadas as sub-fases da fase de pré-processamento contemplando-se entendimento, seleção, limpeza e transformação de dados, bem como os principais métodos e técnicas relacionados às mesmas. Já no quarto capítulo são descritos os experimentos realizados sobre uma base de dados real. Finalmente, no quinto capítulo são apresentadas as considerações finais sobre pré-processamento no processo de DCBD, apontando as dificuldades encontradas na prática, contribuições do presente trabalho e pretensões da continuidade do mesmo. Considera-se como principais contribuições deste trabalho a apresentação de métodos e técnicas de pré-processamento existentes, a comprovação da importância da interatividade com o especialista do domínio ao longo de todo o processo de DCBD, mas principalmente nas tomadas de decisões da fase de pré-processamento, bem como as sugestões de como realizar um pré-processamento sobre uma base de dados real.