7 resultados para Hellmann-Feynman theorem
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Este trabalho compõe-se de duas partes. A primeira parte propõe-se a apresentar um estudo e um programa computacional para a análise não linear geométrica de treliças planas com propriedades: viscoelásticas. Na segunda parte, tem-se o estudo e um programa sobre pórticos planos com propriedades viscoelásticas, usando o modelo reológico standard e o dado pelo CEB. Leva-se em consideração o efeito de temperatura e retração nesta análise. Estende-se o trabalho sobre pórtico para o estudo sobre vigas mistas, levando em consideração a mudança da linha neutra. A formulação está baseada no método dos elementos finitos para grandes deformações, particularizada para treliça e pórtico. É feita a descrição de ambos os programas e rodados diversos exemplos.
Resumo:
Neste trabalho estudamos modelos teóricos que descrevem sistemas eletrônicos fortemente correlacionados, em especial o modelo t-J, e suas aplicações a compostos de óxidos de cobre, notadamente os compostos que apresentam supercondutividade de alta temperatura crítica e o composto Sr2CuO2Cl2. No primeiro capítulo do trabalho, fazemos uma exposição de três modelos que envolvem o tratamento das interações elétron-elétron, que são os modelos de Hubbard de uma banda, o modelo de Heisenberg e o modelo t-J. Na dedução deste último fazemos uma expansão canônica do hamiltoniano de Hubbard, no limite de acoplamento forte, levando-nos a obter um novo hamiltoniano que pode ser utilizado para descrever um sistema antiferromagnético bidimensional na presen- ça de lacunas, que é exatamente o que caracteriza os compostos supercondutores de alta temperatura crítica na sua fase de baixa dopagem.Após termos obtido o hamiltoniano que descreve o modelo t-J, aplicamos à este uma descrição de polarons de spin, numa representação de holons, que são férmions sem spin, e spinons, que são bósons que carregam somente os graus de liberdade de spin. Utilizando uma função de Green para descrever a propagação do polaron pela rede, obtemos uma equação para a sua autoenergia somando uma série de diagramas de Feynman, sendo que para este cálculo utilizamos a aproxima ção de Born autoconsistente[1]. Do ponto de vista numérico demonstramos que a equação integral de Dyson resultante do tratamento anterior não requer um procedimento iterativo para sua solução, e com isto conseguimos trabalhar com sistemas com grande número de partículas. Os resultados mostram, como um aspecto novo, que o tempo de vida média do holon tem um valor bastante grande no ponto (π,0 ) da rede recíproca, perto da singularidade de Van Hove mencionada na literatura[2]. Este aspecto, e suas implicações, é amplamente discutido neste capítulo. No capítulo 3 estudamos o modelo estendido t-t'-J, com tunelamento à segundos vizinhos e a incorporação dos termos de três sítios[3]. Fazemos a mesma formulação do capítulo anterior, e discutimos as aplicações dos nossos resultados ao óxido mencionado anteriormente. Finalmente, no último capítulo apresentamos uma aplicação original do modelo t-J à uma rede retangular, levemente distorcida, e demonstramos que os resultados do capítulo 3 são reproduzidos sem necessidade de introduzir termos de tunelamento adicionais no hamiltoniano. Esta aplicação pode se tornar relevante para o estudo das fases de tiras encontradas recentemente nesses materiais de óxidos de cobre.
Resumo:
Neste trabalho estudamos três generalizações para o último Teorema de Fermat. A primeira generalização trata de expoentes negativos e de expoentes racionais. Além de mostrar em que casos estas equações possuem soluções, damos uma caracterização completa para todas as soluções inteiras não-nulas existentes. A segunda generalização também trata de expoentes racionais, porém num contexto mais amplo. Aqui permitimos que as raízes n-ésimas sejam complexas, não necessariamente reais. Na terceira generalização vemos que o último Teorema de Fermat também vale para expoentes inteiros gaussianos.
Resumo:
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Trataremos de algumas caracterizações e propriedades desta classe de módulos. O teorema principal nos dá uma caracterização sobre módulos e anéis distributivos através de seus submódulos e ideais saturados.
Resumo:
Objetivos: Desenvolver e validar instrumento que auxilie o pediatra a determinar a probabilidade de ocorrência do abuso sexual em crianças. Métodos: Estudo de caso-controle com 201 crianças que consultaram em ambulatórios de pediatria e locais de referência para vítimas de abuso sexual, entre março e novembro de 2004: grupo caso (com suspeita ou revelação de abuso sexual) e grupo controle (sem suspeita de abuso sexual). Aplicou-se, junto aos responsáveis, um questionário com 18 itens e cinco opções de respostas segundo a escala Likert, abordando comportamento, sintomas físicos e emocionais apresentados pelas crianças. Excluíram-se nove crianças sem controle esfincteriano e um item respondido por poucas pessoas. A validade e consistência interna dos itens foram avaliadas com obtenção de coeficientes de correlação (Pearson, Spearman e Goodman-Kruskal), coeficiente α de Cronbach e cálculo da área da curva ROC. Calculou-se, após, a razão de verossimilhança (RV) e os valores preditivo positivos (VPP) para os cinco itens do questionário que apresentaram os melhores desempenhos. Resultados: Obteve-se um questionário composto pelos cinco itens que melhor discriminaram crianças com e sem abuso sexual em dois contextos. Cada criança recebeu um escore resultante da soma das respostas com pesos de 0 a 4 (amplitude de 0 a 20), o qual, através do teorema de Bayes (RV), indicou sua probabilidade pós-teste (VPP) de abuso sexual. Conclusões: O instrumento proposto é útil por ser de fácil aplicação, auxiliando o pediatra na identificação de crianças vítimas de abuso sexual. Ele fornecerá, conforme o escore obtido, a probabilidade (VPP) de abuso sexual, orientando na conduta de cuidado à criança.
Resumo:
Apresentamos aqui o modelo esférico quântico de vidro de spin usando a aproximação de recozimento. São calculadas a energia livre, bem como a temperatura crítica em função do momentum de inércia e a entropia. São consideradas interações aleatórias de longo alcance (campo médio) com distribuição normal de média zero, e a energia cinética de cada spin. O cálculo é feito utilizando o formalismo funcional de Feynman de integrais de caminhos. O limite clássico é apresentado e coincide com o limite conhecido de teorias anteriores.