6 resultados para Hasse Theorem
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Este trabalho compõe-se de duas partes. A primeira parte propõe-se a apresentar um estudo e um programa computacional para a análise não linear geométrica de treliças planas com propriedades: viscoelásticas. Na segunda parte, tem-se o estudo e um programa sobre pórticos planos com propriedades viscoelásticas, usando o modelo reológico standard e o dado pelo CEB. Leva-se em consideração o efeito de temperatura e retração nesta análise. Estende-se o trabalho sobre pórtico para o estudo sobre vigas mistas, levando em consideração a mudança da linha neutra. A formulação está baseada no método dos elementos finitos para grandes deformações, particularizada para treliça e pórtico. É feita a descrição de ambos os programas e rodados diversos exemplos.
Resumo:
Dissertacao essencialmente sobre derivacoes em aneis mostra que toda derivacao de jordan num anel primo e livre de 2-torcao e uma derivacao usual. prova que toda derivacao de hasse-schmidt-jordan definida num anel semiprimo e livre de 2-torcao e uma derivacao de hasse-schmidt. finalisa com derivacoes algebricas d definidas num anel primo r (c0m unidade) e com suas respectivas extensoes d* ao anel de quocientes (a direita) de martingale de r denotado por q. e demonstrado entao, uma equivalencia entre as r, q e c-algebricidades de d e d*, onde c denota o centroide estendido de r.
Resumo:
Neste trabalho estudamos três generalizações para o último Teorema de Fermat. A primeira generalização trata de expoentes negativos e de expoentes racionais. Além de mostrar em que casos estas equações possuem soluções, damos uma caracterização completa para todas as soluções inteiras não-nulas existentes. A segunda generalização também trata de expoentes racionais, porém num contexto mais amplo. Aqui permitimos que as raízes n-ésimas sejam complexas, não necessariamente reais. Na terceira generalização vemos que o último Teorema de Fermat também vale para expoentes inteiros gaussianos.
Resumo:
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Trataremos de algumas caracterizações e propriedades desta classe de módulos. O teorema principal nos dá uma caracterização sobre módulos e anéis distributivos através de seus submódulos e ideais saturados.
Resumo:
Objetivos: Desenvolver e validar instrumento que auxilie o pediatra a determinar a probabilidade de ocorrência do abuso sexual em crianças. Métodos: Estudo de caso-controle com 201 crianças que consultaram em ambulatórios de pediatria e locais de referência para vítimas de abuso sexual, entre março e novembro de 2004: grupo caso (com suspeita ou revelação de abuso sexual) e grupo controle (sem suspeita de abuso sexual). Aplicou-se, junto aos responsáveis, um questionário com 18 itens e cinco opções de respostas segundo a escala Likert, abordando comportamento, sintomas físicos e emocionais apresentados pelas crianças. Excluíram-se nove crianças sem controle esfincteriano e um item respondido por poucas pessoas. A validade e consistência interna dos itens foram avaliadas com obtenção de coeficientes de correlação (Pearson, Spearman e Goodman-Kruskal), coeficiente α de Cronbach e cálculo da área da curva ROC. Calculou-se, após, a razão de verossimilhança (RV) e os valores preditivo positivos (VPP) para os cinco itens do questionário que apresentaram os melhores desempenhos. Resultados: Obteve-se um questionário composto pelos cinco itens que melhor discriminaram crianças com e sem abuso sexual em dois contextos. Cada criança recebeu um escore resultante da soma das respostas com pesos de 0 a 4 (amplitude de 0 a 20), o qual, através do teorema de Bayes (RV), indicou sua probabilidade pós-teste (VPP) de abuso sexual. Conclusões: O instrumento proposto é útil por ser de fácil aplicação, auxiliando o pediatra na identificação de crianças vítimas de abuso sexual. Ele fornecerá, conforme o escore obtido, a probabilidade (VPP) de abuso sexual, orientando na conduta de cuidado à criança.