3 resultados para Giunzioni, Incollaggi, Pin, Collar, Interferenza
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
O comportamento de calcários gaúchos, como dessulfurantes, foi avaliado levando-se em consideração a influência das características estruturais dos calcinados e de seus precursores. Os materiais, na faixa granulométrica de 53-62µm, foram calcinados em uma termobalança em atmosfera de N2 (100%) ou de mistura N2 (85,2%) + CO2 (14,8%) e posteriormente, submetidos a mistura oxidante contendo dióxido de enxofre. As distribuições de tamanhos de poros (DTP) dos calcinados, mostraram-se dependentes da atmosfera de calcinação e do raio de grão do calcário precursor. A ordem de reatividade, estabelecida pelos calcinados estudados neste trabalho, não apresentou relação com a consideração de uma DTP ótima (maioria de poros acima de 50Å), não sendo portanto este critério válido para seleção de dessulfurantes. Para os calcinados de uma mesma amostra, obteve-se uma relação direta entre tamanho de grão do CaO (área superficial) e reatividade, sendo as trajetórias de reação definidas de maneira combinada entre as suas distribuições de tamanhos de poros e a forma como os poros estão localizados e conectados na estrutura. Entre materiais diferentes, calcinados sob as mesmas condições e que apresentam as mesmas características físicas e de distribuição, as trajetórias de reação foram bastante distintas, demonstrando que essas semelhanças físicas não correspondem a uma mesma capacidade de reação ao longo do tempo. Isto salientou uma possível influência das características intrínsecas de cada material, relacionadas à localização e conexão dos poros na estrutura, em sua capacidade dessulfurante. Entre os calcinados com semelhanças em suas DTP e propriedades físicas, tornou-se possível relacionar a ordem de reatividade ao raio de grão do calcário precursor (determinante da localização e da forma de conexão dos poros na estrutura), sendo os calcinados de precursores de menor raio de grão os mais reativos.
Resumo:
Electronic applications are currently developed under the reuse-based paradigm. This design methodology presents several advantages for the reduction of the design complexity, but brings new challenges for the test of the final circuit. The access to embedded cores, the integration of several test methods, and the optimization of the several cost factors are just a few of the several problems that need to be tackled during test planning. Within this context, this thesis proposes two test planning approaches that aim at reducing the test costs of a core-based system by means of hardware reuse and integration of the test planning into the design flow. The first approach considers systems whose cores are connected directly or through a functional bus. The test planning method consists of a comprehensive model that includes the definition of a multi-mode access mechanism inside the chip and a search algorithm for the exploration of the design space. The access mechanism model considers the reuse of functional connections as well as partial test buses, cores transparency, and other bypass modes. The test schedule is defined in conjunction with the access mechanism so that good trade-offs among the costs of pins, area, and test time can be sought. Furthermore, system power constraints are also considered. This expansion of concerns makes it possible an efficient, yet fine-grained search, in the huge design space of a reuse-based environment. Experimental results clearly show the variety of trade-offs that can be explored using the proposed model, and its effectiveness on optimizing the system test plan. Networks-on-chip are likely to become the main communication platform of systemson- chip. Thus, the second approach presented in this work proposes the reuse of the on-chip network for the test of the cores embedded into the systems that use this communication platform. A power-aware test scheduling algorithm aiming at exploiting the network characteristics to minimize the system test time is presented. The reuse strategy is evaluated considering a number of system configurations, such as different positions of the cores in the network, power consumption constraints and number of interfaces with the tester. Experimental results show that the parallelization capability of the network can be exploited to reduce the system test time, whereas area and pin overhead are strongly minimized. In this manuscript, the main problems of the test of core-based systems are firstly identified and the current solutions are discussed. The problems being tackled by this thesis are then listed and the test planning approaches are detailed. Both test planning techniques are validated for the recently released ITC’02 SoC Test Benchmarks, and further compared to other test planning methods of the literature. This comparison confirms the efficiency of the proposed methods.
Resumo:
This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.