2 resultados para Functionalist-cognitive approach

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes an animated pedagogical agent that has the role of providing emotional support to the student: motivating and encouraging him, making him believe in his self-ability, and promoting a positive mood in him, which fosters learning. This careful support of the agent, its affective tactics, is expressed through emotional behaviour and encouragement messages of the lifelike character. Due to human social tendency of anthropomorphising software, we believe that a software agent can accomplish this affective role. In order to choose the adequate affective tactics, the agent should also know the student’s emotions. The proposed agent recognises the student’s emotions: joy/distress, satisfaction/disappointment, anger/gratitude, and shame, from the student’s observable behaviour, i. e. his actions in the interface of the educational system. The inference of emotions is psychologically grounded on the cognitive theory of emotions. More specifically, we use the OCC model which is based on the cognitive approach of emotion and can be computationally implemented. Due to the dynamic nature of the student’s affective information, we adopted a BDI approach to implement the affective user model and the affective diagnosis. Besides, in our work we profit from the reasoning capacity of the BDI approach in order for the agent to deduce the student’s appraisal, which allows it to infer the student’s emotions. As a case study, the proposed agent is implemented as the Mediating Agent of MACES: an educational collaborative environment modelled as a multi-agent system and pedagogically based on the sociocultural theory of Vygotsky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.