4 resultados para Funciones elípticas

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação apresenta o desenvolvimento de um novo algoritmo de criptografia de chave pública. Este algoritmo apresenta duas características que o tornam único, e que foram tomadas como guia para a sua concepção. A primeira característica é que ele é semanticamente seguro. Isto significa que nenhum adversário limitado polinomialmente consegue obter qualquer informação parcial sobre o conteúdo que foi cifrado, nem mesmo decidir se duas cifrações distintas correspondem ou não a um mesmo conteúdo. A segunda característica é que ele depende, para qualquer tamanho de texto claro, de uma única premissa de segurança: que o logaritmo no grupo formado pelos pontos de uma curva elíptica de ordem prima seja computacionalmente intratável. Isto é obtido garantindo-se que todas as diferentes partes do algoritmo sejam redutíveis a este problema. É apresentada também uma forma simples de estendê-lo a fim de que ele apresente segurança contra atacantes ativos, em especial, contra ataques de texto cifrado adaptativos. Para tanto, e a fim de manter a premissa de que a segurança do algoritmo seja unicamente dependente do logaritmo elíptico, é apresentada uma nova função de resumo criptográfico (hash) cuja segurança é baseada no mesmo problema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem por objetivo estudar a regularidade de soluções de Equações Diferenciais Parciais Elípticas da forma Lu = f, para f 2 Lp(­), onde p > 1. Para isto, usamos a Decomposição de Calderon-Zygmund e um resultado que é consequência deste, o Teorema da Interpolação de Marcinkiewicz. Além disso, usando quocientes-diferença provamos a regularidade das soluções para o caso p = 2 e L = ¡¢ de uma forma alternativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho estudamos uma equação diferencial parcial elíptica semilinear contendo uma singularidade e um termo de crescimento crítico. A existência de soluções depende da dimensão do espaço e do coeficiente da singularidade. Através da caracterização variacional e com o uso de seqüências de Palais-Smale provamos que o problema possui soluções não triviais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é estudada a convexidade dos conjuntos de nível das soluções de dois problemas envolvendo equações elípticas. O primeiro desses problemas se refere a uma equação da forma 4u = °(u) em um anel convexo, com condições de fronteira u = 0 na fronteira externa e u = 1 na fronteira interna. Para provar a existência de solução do problema utiliza-se o método variacional. O problema de mostrar a convexidade dos conjuntos de nível é transformado em um problema de maximizar uma certa função. O segundo problema considerado é o de mostrar que é log-côncava a primeira autofunção do laplaciano, que tenha como peso uma função côncava.