4 resultados para Função de Green

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A resposta impulso é utilizada como ferramenta padrão no estudo direto de sistemas concentrados, discretos e distribuídos de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma plataforma unificada para a obtenção de respostas dinâmicas. Em particular, as respostas forçadas dos sistemas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. A teoria desenvolve-se de maneira geral e direta para sistemas de n-ésima ordem, introduzindo-se a base dinâmica gerada pela resposta impulso na forma padrão e normalizada, sem utilizar-se a formulação de estado, através da qual reduz-se um sistema de ordem superior para um sistema de primeira ordem. Considerou-se sistemas de primeira ordem a fim de acompanhar-se os muitos resultados apresentados na literatura através da formulação de espaço de estado. Os métodos para o cálculo da resposta impulso foram classificados em espectrais, não espectrais e numéricos. A ênfase é dada aos métodos não espectrais, pois a resposta impulso admite uma fórmula fechada que requer o uso de três equações características do tipo algébrica, diferencial e em diferenças Realizou-se simulações numéricas onde foram apresentados modelos vibratórios clássicos e não clássicos. Os sistemas considerados foram sistemas do tipo concentrado, discreto e distribuído. Os resultados da decomposição da resposta dinâmica de sistemas concentrados diante de cargas harmônicas e não harmônicas foram apresentados em detalhe. A decomposição para o caso discreto foi desenvolvida utilizando-se os esquemas de integração numérica de Adams-Basforth, Strömer e Numerov. Para sistemas distribuídos, foi considerado o modelo de Euler-Bernoulli com força axial, sujeito a entradas oscilatórias com amplitude triangular, pulso e harmônica. As soluções permanentes foram calculadas com o uso da função de Green espacial. A resposta impulso foi aproximada com o uso do método espectral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho estudamos modelos teóricos que descrevem sistemas eletrônicos fortemente correlacionados, em especial o modelo t-J, e suas aplicações a compostos de óxidos de cobre, notadamente os compostos que apresentam supercondutividade de alta temperatura crítica e o composto Sr2CuO2Cl2. No primeiro capítulo do trabalho, fazemos uma exposição de três modelos que envolvem o tratamento das interações elétron-elétron, que são os modelos de Hubbard de uma banda, o modelo de Heisenberg e o modelo t-J. Na dedução deste último fazemos uma expansão canônica do hamiltoniano de Hubbard, no limite de acoplamento forte, levando-nos a obter um novo hamiltoniano que pode ser utilizado para descrever um sistema antiferromagnético bidimensional na presen- ça de lacunas, que é exatamente o que caracteriza os compostos supercondutores de alta temperatura crítica na sua fase de baixa dopagem.Após termos obtido o hamiltoniano que descreve o modelo t-J, aplicamos à este uma descrição de polarons de spin, numa representação de holons, que são férmions sem spin, e spinons, que são bósons que carregam somente os graus de liberdade de spin. Utilizando uma função de Green para descrever a propagação do polaron pela rede, obtemos uma equação para a sua autoenergia somando uma série de diagramas de Feynman, sendo que para este cálculo utilizamos a aproxima ção de Born autoconsistente[1]. Do ponto de vista numérico demonstramos que a equação integral de Dyson resultante do tratamento anterior não requer um procedimento iterativo para sua solução, e com isto conseguimos trabalhar com sistemas com grande número de partículas. Os resultados mostram, como um aspecto novo, que o tempo de vida média do holon tem um valor bastante grande no ponto (π,0 ) da rede recíproca, perto da singularidade de Van Hove mencionada na literatura[2]. Este aspecto, e suas implicações, é amplamente discutido neste capítulo. No capítulo 3 estudamos o modelo estendido t-t'-J, com tunelamento à segundos vizinhos e a incorporação dos termos de três sítios[3]. Fazemos a mesma formulação do capítulo anterior, e discutimos as aplicações dos nossos resultados ao óxido mencionado anteriormente. Finalmente, no último capítulo apresentamos uma aplicação original do modelo t-J à uma rede retangular, levemente distorcida, e demonstramos que os resultados do capítulo 3 são reproduzidos sem necessidade de introduzir termos de tunelamento adicionais no hamiltoniano. Esta aplicação pode se tornar relevante para o estudo das fases de tiras encontradas recentemente nesses materiais de óxidos de cobre.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho visa realizar o estudo do comportamento dinâmico de um eixo rotor flexível, modelado segundo a teoria de Euler-Bernoulli e caracterizar as respostas periódicas de sistemas LTI (sistemas lineares invariantes no tempo) e sistemas fracamente não lineares de ordem arbitrária. Para tanto, é utilizada a base dinâmica gerada pela resposta impulso ou solução fundamental. O comportamento dinâmico de um eixo rotor flexível foi discutido em termos da função de Green espacial e calculada de maneira não-modal. Foi realizado um estudo do problema de autovalor para o caso de um um eixo rotor biapoiado. As freqüências são obtidas e os modos escritos em termos da base dinâmica e da velocidade de rotação. As respostas periódicas de sistemas LTI, utilizadas nas aproximações com sistemas fracamente não lineares, são obtidas, independentemente da ordem do sistema, como um operador integral onde o núcleo é a função de Green T-periódica. Esta função é caracterizada em termos das propriedades de continuidade, periodicidade e salto da função de Green T-periódica, e da base dinâmica Simulações foram realizadas para sistemas concentrados, matriciais e escalares, com o objetivo de mostrar a validade da metodologia desenvolvida com as propriedades da função de Green T-periódica. Foi abordado um modelo não-linear para uma centrífuga utilizada na indústria textil [Starzinski, 1977].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho visa o uso da função de Green de valor inicial no ajuste geostrófico e do método Semi-Lagrangeano na integração de um modelo acoplado oceano-atmosfera descrito pelas equações de águas rasas. O ajuste geostrófico é considerado atravées de perturbações na pressão e do vento. No caso de sistemas sem rotação, é discutida a relação da equação hidrostática com ondas longas não-dispersivas. Com rotação, a conservação da vorticidade potencial permite escolher a elevação correspondente a um estado de equilíbrio geostrófico. O sistema de equações de águas rasas é desacoplado em equações de Klein-Gordon com valores iniciais e termos não-homogêneos acoplados. A resposta dinâmica formada pela resposta transiente e a resposta forçada é obtida para uma perturbação inicial da elevação. A ação do vento como forçante nas equações de momento 2D, através do transporte de Eckman, conduz a uma equação de águas rasas forçada. Uma decomposição da resposta forçada é realizada com uma resposta permanente, que satisfaz a equação de Helmholtz , e com o uso da base dinâmica gerada pela resposta impulso. Um modelo hidrodinâmico 3D introduzido por Casulli e governado por equações não-lineares de águas rasas é integrado na vertical para a obtenção de um modelo 2D. Com isto, as condições de contorno devido a tensão do vento e a fricção devido a topografia do fundo, transformam-se em forçantes do modelo. O modelo foi integrado com um método semi-implícito em diferenças finitas, utilizando-se o método Semi-Lagrangeano para a parte advectiva. Simulações simbólicas foram realizadas para o ajuste geostrófico devido a perturbações de duração infinita e finita para a elevação e para o efeito da tensão do vento. Foram realizadas simulações numéricas para variadas geometrias, em particular a Baia de Guanabara e a Lagoa do Patos.