3 resultados para FERMIONS

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho realizamos um estudo de um buraco em um antiferromagneto, como parte de uma revisão de diferentes técnicas de abordagem das fases de “stripes” nos cupratos supercondutores. Estudamos a transição do formalismo de “strings” para um buraco no modelo t - Jz bidimensional, onde existe uma solução analítica, para a solução de pólaron de spin no modelo t - J isotrópico através da aproximação de Born auto-consistente. A forma funcional dos picos de quase-partícula, do peso espectral e do “gap” espectral foi investigada numericamente em detalhe, em função da anisotropia magnética. O movimento de um pólaron de spin na presença de uma parede de domínio antiferromagnética (ADW) em antifase, como uma realização da configuração de “stripes” nos planos CuO dos cupratos de baixa dopagem, também foi analisada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho estudamos modelos teóricos que descrevem sistemas eletrônicos fortemente correlacionados, em especial o modelo t-J, e suas aplicações a compostos de óxidos de cobre, notadamente os compostos que apresentam supercondutividade de alta temperatura crítica e o composto Sr2CuO2Cl2. No primeiro capítulo do trabalho, fazemos uma exposição de três modelos que envolvem o tratamento das interações elétron-elétron, que são os modelos de Hubbard de uma banda, o modelo de Heisenberg e o modelo t-J. Na dedução deste último fazemos uma expansão canônica do hamiltoniano de Hubbard, no limite de acoplamento forte, levando-nos a obter um novo hamiltoniano que pode ser utilizado para descrever um sistema antiferromagnético bidimensional na presen- ça de lacunas, que é exatamente o que caracteriza os compostos supercondutores de alta temperatura crítica na sua fase de baixa dopagem.Após termos obtido o hamiltoniano que descreve o modelo t-J, aplicamos à este uma descrição de polarons de spin, numa representação de holons, que são férmions sem spin, e spinons, que são bósons que carregam somente os graus de liberdade de spin. Utilizando uma função de Green para descrever a propagação do polaron pela rede, obtemos uma equação para a sua autoenergia somando uma série de diagramas de Feynman, sendo que para este cálculo utilizamos a aproxima ção de Born autoconsistente[1]. Do ponto de vista numérico demonstramos que a equação integral de Dyson resultante do tratamento anterior não requer um procedimento iterativo para sua solução, e com isto conseguimos trabalhar com sistemas com grande número de partículas. Os resultados mostram, como um aspecto novo, que o tempo de vida média do holon tem um valor bastante grande no ponto (π,0 ) da rede recíproca, perto da singularidade de Van Hove mencionada na literatura[2]. Este aspecto, e suas implicações, é amplamente discutido neste capítulo. No capítulo 3 estudamos o modelo estendido t-t'-J, com tunelamento à segundos vizinhos e a incorporação dos termos de três sítios[3]. Fazemos a mesma formulação do capítulo anterior, e discutimos as aplicações dos nossos resultados ao óxido mencionado anteriormente. Finalmente, no último capítulo apresentamos uma aplicação original do modelo t-J à uma rede retangular, levemente distorcida, e demonstramos que os resultados do capítulo 3 são reproduzidos sem necessidade de introduzir termos de tunelamento adicionais no hamiltoniano. Esta aplicação pode se tornar relevante para o estudo das fases de tiras encontradas recentemente nesses materiais de óxidos de cobre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho desenvolvemos um modelo efetivo para a descrição da matéria nuclear, que incorpora os resultados obtidos, para a descrição de um núcleon, pelo modelo de sacola difusa. O sistema nuclear será descrito via uma função de energia interna, que compreende um termo livre e outro que leva em conta a interação entre os núcleons. A parte livre, por se tratar de um sistema de férmions, corresponderá à energia de um gásde Fermi livre. Além disso, para evitar a superposição de dois ou mais núcleons, introduzimos um volume de exclusão a la Van der Waals. Na parte integrante, a troca de píons entre os núcleons será levada em conta via um potêncial efetivo. A função energia interna dependerá da densidade da matéria nuclear e também de um parâmetro que determinará o volume esperado de cada núcleon na matéria nuclear. O valor deste parâmetro será um pouco diferente do valor encontrado para um núcleons isolado, devido à interação entre eles. Obtém-se então resultados para a energia de ligação por núcleon para a matéria nuclear simétrica e para a matéria de nêutrons, bem como para a equação de estado da matéria de nêutrons.