61 resultados para Equalização Adaptativa. Redes Neurais. Sistemas Ópticos. Equalizador Neural

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A capacidade de encontrar e aprender as melhores trajetórias que levam a um determinado objetivo proposto num ambiente e uma característica comum a maioria dos organismos que se movimentam. Dentre outras, essa e uma das capacidades que têm sido bastante estudadas nas ultimas décadas. Uma consequência direta deste estudo e a sua aplicação em sistemas artificiais capazes de se movimentar de maneira inteligente nos mais variados tipos de ambientes. Neste trabalho, realizamos uma abordagem múltipla do problema, onde procuramos estabelecer nexos entre modelos fisiológicos, baseados no conhecimento biológico disponível, e modelos de âmbito mais prático, como aqueles existentes na área da ciência da computação, mais especificamente da robótica. Os modelos estudados foram o aprendizado biológico baseado em células de posição e o método das funções potencias para planejamento de trajetórias. O objetivo nosso era unificar as duas idéias num formalismo de redes neurais. O processo de aprendizado de trajetórias pode ser simplificado e equacionado em um modelo matemático que pode ser utilizado no projeto de sistemas de navegação autônomos. Analisando o modelo de Blum e Abbott para navegação com células de posição, mostramos que o problema pode ser formulado como uma problema de aprendizado não-supervisionado onde a estatística de movimentação no meio passa ser o ingrediente principal. Demonstramos também que a probabilidade de ocupação de um determinado ponto no ambiente pode ser visto como um potencial que tem a propriedade de não apresentar mínimos locais, o que o torna equivalente ao potencial usado em técnicas de robótica como a das funções potencias. Formas de otimização do aprendizado no contexto deste modelo foram investigadas. No âmbito do armazenamento de múltiplos mapas de navegação, mostramos que e possível projetar uma rede neural capaz de armazenar e recuperar mapas navegacionais para diferentes ambientes usando o fato que um mapa de navegação pode ser descrito como o gradiente de uma função harmônica. A grande vantagem desta abordagem e que, apesar do baixo número de sinapses, o desempenho da rede e muito bom. Finalmente, estudamos a forma de um potencial que minimiza o tempo necessário para alcançar um objetivo proposto no ambiente. Para isso propomos o problema de navegação de um robô como sendo uma partícula difundindo em uma superfície potencial com um único ponto de mínimo. O nível de erro deste sistema pode ser modelado como uma temperatura. Os resultados mostram que superfície potencial tem uma estrutura ramificada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta uma nova metodologia de localização de faltas em sistemas de distribuição de energia. O esquema proposto é capaz de obter uma estimativa precisa da localização tanto de faltas sólidas e lineares quanto de faltas de alta impedância. Esta última classe de faltas representa um grande problema para as concessionárias distribuidoras de energia elétrica, uma vez que seus efeitos nem sempre são detectados pelos dispositivos de proteção utilizados. Os algoritmos de localização de faltas normalmente presentes em relés de proteção digitais são formulados para faltas sólidas ou com baixa resistência de falta. Sendo assim, sua aplicação para localização de faltas de alta impedância resulta em estimativas errôneas da distância de falta. A metodologia proposta visa superar esta deficiência dos algoritmos de localização tradicionais através da criação de um algoritmo baseado em redes neurais artificiais que poderá ser adicionado como uma rotina adicional de um relé de proteção digital. O esquema proposto utiliza dados oscilográficos pré e pós-falta que são processados de modo que sua localização possa ser estimada através de um conjunto de características extraídas dos sinais de tensão e corrente. Este conjunto de características é classificado pelas redes neurais artificiais de cuja saída resulta um valor relativo a distância de falta. Além da metodologia proposta, duas metodologias para localização de faltas foram implementadas, possibilitando a obtenção de resultados comparativos. Os dados de falta necessários foram obtidos através de centenas de simulações computacionais de um modelo de alimentador radial de distribuição. Os resultados obtidos demonstram a viabilidade do uso da metodologia proposta para localização de faltas em sistemas de distribuição de energia, especialmente faltas de alta impedância.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As redes neurais podem ser uma alternativa aos modelos paramétricos tradicionais para a precificação de opções quando a dinâmica do ativo primário não for conhecida ou quando a equação associada à condição de não-arbitragem não puder ser resolvida analiticamente. Este trabalho compara a performance do modelo tradicional de Black-Scholes e as redes neurais. Os modelos foram utilizados para precificar e realizar a cobertura dinâmica das opções de compra das ações de Telebrás. Os resultados obtidos sugerem que as redes neurais deveriam ser consideradas pelos operadores de opções como uma alternativa aos modelos tradicionais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo propõe um método alternativo para a previsão de demanda de energia elétrica, através do desenvolvimento de um modelo de estimação baseado em redes neurais artificiais. Tal método ainda é pouco usado na estimativa de demanda de energia elétrica, mas tem se mostrado promissor na resolução de problemas que envolvem sistemas de potência. Aqui são destacados os principais fatores que devem pautar a modelagem de um sistema baseada em redes neurais artificiais, que são: seleção das variáveis de entrada; quantidade de variáveis; arquitetura da rede; treinamento; previsão da saída. O modelo ora apresentado foi desenvolvido a partir de uma amostra de 125 municípios do Estado do Rio Grande do Sul (Brasil), nos anos de 1999 a 2002. Como variáveis de entrada, foram selecionados a temperatura ambiente (média e desvio-padrão anual), a umidade relativa do ar (média e desvio-padrão anual), o PIB anual e a população anual de cada município incluído na amostra. Para validar a proposta apresentada, são mostrados resultados baseados nas simulações com o modelo proposto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo principal deste trabalho é propor uma metodologia de classificação de imagens de sensoriamento remoto que integre a importância de atributos de textura na seleção de feições, através da utilização de freqüências espaciais de cada classe textural e sua direção, com a eficiência das redes neurais artificiais para classificá-las. O processo é composto por uma etapa de filtragem baseada nos filtros de Gabor, seguida de uma fase de classificação através de uma rede neural Multi-Layer Perceptron com algoritmo BackPropagation. A partir da transformada de Fourier são estimados os parâmetros a serem utilizados na constituição dos filtros de Gabor, adequados às freqüências espaciais associadas a cada classe presente na imagem a ser classificada. Desta forma, cada filtro gera uma imagem filtrada. O conjunto de filtros determina um conjunto de imagens filtradas (canais texturais). A classificação pixel a pixel é realizada pela rede neural onde cada pixel é definido por um vetor de dimensionalidade igual ao número de filtros do conjunto. O processo de classificação através da rede neural Multi-Layer Perceptron foi realizado pelo método de classificação supervisionada. A metodologia de classificação de imagens de sensoriamento remoto proposta neste trabalho foi testada em imagens sintética e real de dimensões 256 x 256 pixels. A análise dos resultados obtidos é apresentada sob a forma de uma Matriz de Erros, juntamente com a discussão dos mesmos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algoritmos ótimos na extração de componentes principais com aprendizado não-supervisionado em redes neurais de múltiplos neurônios de saída são não-locais, ou seja, as modificações em uma dada sinapse entre dois neurônios dependem também da atividade de outros neurônios. Esta rede ótima extrairá as principais componentes dos dados e submetidos à sua primeira camada. As principais componentes são as projeções destes vetores nos autovalores máximos da matriz de correlação Gij = (eiej), onde a média (-) é sobre a distribuição de e. Existem fortes evidências indicando que sinapses biológicas só se modificam via regras locais, como por exemplo a regra de Hebb. Mas se aplicarmos regras locais numa rede com múltiplas saídas, todos os neurônios da saída serão equivalentes e darão respostas redundantes. A rede será bastante ineficiente. Um modo de contornar este problema é através da restrição dos campos receptivos dos neurônios de saída. Se cada neurônio acessar diferentes partes dos estímulos de entrada, a redundância diminui significativamente. Em contrapartida, ao mesmo tempo que a redundância diminui, também diminui a informação contida em cada neurônio; assim, devemos balancear os dois efeitos otimizando o campo receptivo. O valor ótimo, em geral, depende da natureza dos estímulos, sua estatística, e também do ruído intrínseco à rede. Objetivamos com este trabalho determinar a estrutura ótima de campos receptivos com aprendizado não-supervisionado para uma rede neural de uma camada em diversas condições medindo seu desempenho a partir de técnicas de reconstrução.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho relata o desenvolvimento de uma aplicação capaz de reconhecer um vocabulário restrito de comandos de direcionamento pronunciados de forma isolada e independentes do locutor. Os métodos utilizados para efetivar o reconhecimento foram: técnicas clássicas de processamento de sinais e redes neurais artificiais. No processamento de sinais visou-se o pré-processamento das amostras para obtenção dos coeficientes cepstrais. Enquanto que para o treinamento e classificação foram utilizadas duas redes neurais distintas, as redes: Backpropagation e Fuzzy ARTMAP. Diversas amostras foram coletadas de diferentes usuários no sentido de compor um banco de dados flexível para o aprendizado das redes neurais, que garantisse uma representação satisfatória da grande variabilidade que apresentam as pronúncias entre as vozes dos usuários. Com a aplicação de tais técnicas, o reconhecimento demostrou-se eficaz, distinguindo cada um dos comandos com bons índices de acerto, uma vez que o sistema é independente do locutor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma atividade com a magnitude da avicultura, que usa equipamentos de última geração e serviços atualizados, é levada, na maioria dos casos, a tomar decisões que envolvem todos aspectos de produção, apoiada em critérios subjetivos. A presente tese objetivou estudar a utilização das redes neurais artificiais na estimação dos parâmetros de desempenho de matrizes pesadas, pertencentes a uma integração avícola sul-brasileira. Foram utilizados os registros de 11 lotes em recria, do período compreendido entre 09/11/97 a 10/01/99 e de 21 lotes em produção, do período compreendido entre 26/04/98 a 19/12/99, para a análise por redes neurais artificiais. Os dados utilizados corresponderam a 273 linhas de registros semanais, do período de recria e 689 linhas de registros semanais, do período de produção. Os modelos de redes neurais foram comparados e selecionados como melhores, baseados no coeficiente de determinação múltipla (R2), Quadrado Médio do Erro (QME), bem como pela análise de gráficos, plotando a predição da rede versus a predição menos o real (resíduo). Com esta tese foi possível explicar os parâmetros de desempenho de matrizes pesadas, através da utilização de redes neurais artificiais. A técnica permite a tomada de decisões por parte do corpo técnico, baseadas em critérios objetivos obtidos cientificamente. Além disso, este método permite simulações das conseqüências de tais decisões e fornece a percentagem de contribuição de cada variável no fenômeno em estudo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta tese são estimadas funções não lineares de importação e exportação para o Brasil, utilizando a metodologia de redes neurais artificiais, a partir de dados trimestrais, no período de 1978 a 1999. Com relação às importações, partindo-se da hipótese de país pequeno, as estimações são feitas para a demanda de importações totais, de bens intermediários e de material elétrico. Para as exportações, o pressuposto de país pequeno, num contexto de concorrência monopolística, é utilizado, de maneira que as estimações são feitas para a oferta e demanda por exportações brasileiras. As séries selecionadas são as exportações totais, as exportações de manufaturados e as exportações de material elétrico. A metodologia adotada para as importações procura visualizar a não linearidade presente nas séries de comércio exterior e encontrar a topologia de rede que melhor represente o comportamento dos dados, a partir de um processo de validação do período analisado. Procura observar, também, a sensibilidade das saídas das redes a estímulos nas variáveis de entrada, dado a dado e por formação de clusters. Semelhante método é utilizado para as exportações, com a ressalva que, diante de um problema de simultaneidade, o processo de ajuste das redes e análise da sensibilidade é realizado a partir de uma adaptação do método de equações simultâneas de dois estágios. Os principais resultados para as importações mostram que os dados apresentam-se de maneira não linear, e que ocorreu uma ruptura no comportamento dos dados em 1989 e 1994. Sobretudo a partir dos anos 90, as variáveis que se mostram mais significativas são o PIB e a taxa de câmbio, seguidas da variável utilização de capacidade produtiva, que se mostra com pouca relevância Para o período de 1978 a 1988, que apresenta um reduzido impacto das variáveis, a taxa de câmbio é relevante, na explicação do comportamento das importações brasileiras, seguida da utilização de capacidade produtiva, que demonstra-se significativa, apenas, para a série de bens intermediários. Para as exportações, os dados, também, se apresentam de maneira não linear, com rupturas no seu comportamento no final da década de 80 e meados de 1994. Especificamente, para a oferta e a demanda, as variáveis mais importantes foram a taxa de câmbio real e o PIB mundial, respectivamente. No todo, as séries mais importantes na explicação das importações e exportações foram a importação total e de bens intermediários e a exportação total e de manufaturados. Tanto para as importações, quanto para as exportações, os resultados mais expressivos foram obtidos para os dados mais agregados. Por fim, com relação às equações das exportações brasileiras, houve uma superioridade de ajuste e significância das variáveis das equações de demanda, frente às de oferta, em explicar os movimentos das exportações brasileiras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O estudo foi feito através de séries históricas de dados de um incubatório pertencente a uma integração avícola do Rio Grande do Sul, durante os anos de 1999 a 2003, com os quais foram feitas análises do tipo observacional analítico e transversal. Primeiramente usou-se os registros de 5 linhagens de frangos utilizadas pela empresa no transcorrer do período de 23 de fevereiro de 1995 a 25 de janeiro de 2002. As linhagens foram identificadas da seguinte forma: COBB, HIGH YIELD, MPK, ROSS308, e X. Esses 81 lotes analisados foram estudados através dos seus respectivos registros que continham: o número inicial de fêmeas, número inicial de machos, ração total/cabeça, ração/cabeça/inicial/recria, ração/cabeça/inicial/postura, ovos postos, ração p/ovo posto, pintos nascidos, percentagem viabilidade postura fêmea, percentagem viabilidade postura machos. O método aqui proposto provou ser capaz de classificar as linhagens a partir das entradas escolhidas. Na linhagem que apresentava uma grande quantidade de amostras a classificação foi muito precisa. Nas demais, com menor número de dados, a classificação foi efetuada, e, como era de se esperar, os resultados foram menos consistentes. Com o mesmo banco de dados dos lotes fechados, realizou-se a segunda etapa da dissertação. Nela, procedeu-se o treinamento das redes neurais artificiais onde foram utilizadas as seguintes variáveis de saída: ovos incubáveis, percentagem de ovos incubáveis, ovos incubados, percentagem de ovos incubados, pintos nascidos e pintos aproveitáveis. Os resultados apresentaram R2 oscilando entre 0,93 e 0,99 e o erro médio e o quadrado médio do erro ajustados, demonstrando a utilidade das redes para explicar as variáveis de saída. Na terceira e última etapa da dissertação, destinada à validação dos modelos, foram usados quatro arquivos distintos denominados da seguinte forma: INPESO (3.110 linhas de registros de pesos dos reprodutores), ININFO (56.018 linhas de registros com as informações diárias do ocorrido nas granjas de reprodução até o incubatório), INOVOS (35.000 linhas de registros com informações sobre os ovos processados), INNASC: 43.828 linhas de registros com informações sobre os nascimentos. O modelo gerado para o ano de 1999 foi capaz de predizer corretamente os resultados deste mesmo ano e dos anos de 2000, 2001, 2002 e 2003. O mesmo procedimento foi repetido criando modelo com os registros do ano em questão e validando-o com os registros dos anos subseqüentes. Em todas as ocasiões foram obtidos bons resultados traduzidos por um alto valor no R2. Concluindo, os fenômenos próprios do incubatório puderam ser explicados através das redes neurais artificiais. A técnica, seguindo a mesma tendência das dissertações que anteriormente já haviam demonstrado que esta metodologia pode ser utilizada para o gerenciamento de reprodutoras pesadas e de frangos de corte, pode realizar simulações, predições e medir a contribuição de cada variável no fenômeno observado, tornando-se uma poderosa ferramenta para o gerenciamento do incubatório e num suporte cientificamente alicerçado para a tomada de decisão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo objetivou demonstrar que é possível explicar os fenômenos que ocorrem na criação de frangos de corte através de redes neurais artificiais. A estatística descritiva e a diferença entre as médias das variáveis dos dados iniciais foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foi utilizada uma série histórica de dados de produção de frangos de corte, obtidos nos anos de 2001 e 2002, fornecidos por uma Integração Avícola do Rio Grande do Sul, contendo informações de 1.516 criadores com lotes alojados em 2001 e 889 criadores com lotes alojados em 2002. Nos arquivos estavam registrados, para cada lote, suas variáveis de produção, tais como número do lote, data do alojamento, data do abate, idade ao abate, número de pintos alojados, quilogramas de ração consumidos, quilogramas de frangos produzidos, número de aves abatidas, custo do frango produzido, mortalidade, peso médio, ganho de peso diário, índice de conversão alimentar, índice de eficiência, quilogramas líquido de frangos, quilogramas de ração inicial, quilogramas de ração crescimento, quilogramas de ração abate, além de outros. Para a construção das redes neurais artificiais foi utilizado o programa computacional NeuroShell®Predictor, desenvolvido pela Ward Systems Group. Ao programa foi identificado as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e a variável de “saída” aquela a ser predita. Para o treinamento das redes foram usados 1.000 criadores do banco de dados do alojamento de frangos de corte de 2001. Os restantes 516 criadores de 2001 e todos os 889 criadores de 2002 serviram para a validação das predições, os quais não participaram da etapa de aprendizagem, sendo totalmente desconhecidos pelo programa. Foram gerados 20 modelos na fase de treinamento das redes neurais artificiais, com distintos parâmetros de produção ou variáveis (saídas). Em todos estes modelos, as redes neurais artificiais geradas foram bem ajustadas apresentando sempre, um Coeficiente de Determinação Múltipla (R²) elevado e o menor Quadrado Médio do Erro (QME). Ressalta-se que o R² perfeito é 1 e um coeficiente muito bom deve estar próximo de 1. Todos os 20 modelos, quando validados com os 516 lotes de 2001 e com 889 de 2002, apresentaram também Coeficientes de Determinação Múltipla (R²) elevados e muito próximos de 1, além de apresentarem o Quadrado Médio do Erro (QME) e Erro Médio reduzidos. Foi comprovado não haver diferenças significativas entre as médias dos valores preditos e as médias dos valores reais, em todas as validações efetuadas nos lotes abatidos em 2001 e em 2002, quando aplicados os 20 modelos de redes neurais gerados. Como conclusão, as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos com a produção industrial de frangos de corte. A técnica oferece critérios objetivos, gerados cientificamente, que embasarão as decisões dos responsáveis pela produção industrial de frangos de corte.Também permite realizar simulações e medir a contribuição de cada variável no fenômeno em estudo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta o estudo, investigação e realização de experimentos práticos, empregados na resolução do problema de reconhecimento de regiões promotoras em organismos da família Mycoplasmataceae. A partir disso, é proposta uma metodologia para a solução deste problema baseada nas Redes Neurais Artificiais. Os promotores são considerados trechos de uma seqüência de DNA que antecedem um gene, podem ser tratados como marcadores de uma seqüência de letras que sinalizam a uma determinada enzima um ponto de ligação. A posição onde se situa o promotor antecede o ponto de início do processo de transcrição, onde uma seqüência de DNA é transformada em um RNA mensageiro e, este potencialmente, em uma proteína. As Redes Neurais Artificiais representam modelos computacionais, inspirados no funcionamento de neurônios biológicos, empregadas com sucesso como classificadores de padrões. O funcionamento básico das Redes Neurais está ligado ao ajuste de parâmetros que descrevem um modelo representacional. Uma revisão bibliográfica de trabalhos relacionados, que empregam a metodologia de Redes Neurais ao problema proposto, demonstrou a sua viabilidade. Entretanto, os dados relativos à família Mycoplasmataceae apresentam determinadas particularidades de difícil compreensão e caracterização, num espaço restrito de amostras comprovadas. Desta forma, esta tese relata vários experimentos desenvolvidos, que buscam estratégias para explorar o conteúdo de seqüências de DNA, relativas à presença de promotores. O texto apresenta a discussão de seis experimentos e a contribuição de cada um para consolidação de um framework que agrega soluções robustas consideradas adequadas à solução do problema em questão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas, deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuro-evolução é um dos métodos de aprendizado por reforço mais proeminentes. Em vista disto, neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Mais detalhadamente, desenvolveu-se uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração, além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Um ambiente de simulação foi desenvolvido e uma série de experimentos realizados com o objetivo de avaliar o modelo proposto e identificar quais os melhores valores para os diversos parâmetros do modelo. O modelo proposto foi aplicado no domínio das tarefas de perseguição-evasão.