141 resultados para Equações diferenciais não-lineares - Solução analítica aproximada
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.
Resumo:
Neste trabalho apresenta-se uma solu c~ao para um problema abstrato de Cauchy. Basicamente, d a-se uma formula c~ao abstrata para certos tipos de equa c~oes diferenciais parciais n~ao lineares de evolu c~ao em espa cos de Nikol'skii, tais espa cos possuem boas propriedades de regularidade e resultados de imers~ao compacta, num certo sentido s~ao intermedi arios entre os espa cos de Holder e os espa cos de Sobolev. Aplicando o m etodo de Galerkin, prova-se resultados de exist^encia global de solu c~oes fracas, como tamb em a exist^encia de solu c~oes fracas com a propriedade de reprodu c~ao. E impondo mais hip oteses sobre os operadores envolvidos demonstra-se unicidade de solu c~oes fracas.
Resumo:
Neste trabalho, apresentamos uma solução analítica para as equações difusivas unidimensionais da Teoria Geral de Perturbação em uma placa heterogênea, isto é, apresentamos as soluções analíticas para os problemas de autovalor para o fluxo de nêutrons e para o fluxo adjunto de nêutrons, para o cálculo do fator de multiplicação efetivo (keff), para o problema de fonte fixa e para o problema de função auxiliar. Resolvemos todos os problemas mencionados aplicando a Transformada de Laplace em uma placa heterogênea considerando um modelo de dois grupos de energia e realizamos a inversão de Laplace do fluxo transformado analiticamente através da técnica da expansão de Heaviside. Conhecendo o fluxo de nêutrons, exceto pelas constantes de integração, aplicamos as condições de contorno e de interface e resolvemos as equações algébricas homogêneas para o fator de multiplicação efetivo pelo método da bissecção. Obtemos o fluxo de nêutrons através da avaliação das constantes de integração para uma potência prescrita. Exemplificamos a metodologia proposta para uma placa com duas regiões e comparamos os resultados obtidos com os existentes na literatura.
Resumo:
O objetivo deste trabalho é obter uma nova solução analítica para a equação de advecção-difusão. Para tanto, considera-se um problema bidimensional difusivo-advectivo estacionário com coeficiente de difusão turbulenta vertical variável que modela a dispersão de poluentes na atmosfera. São utilizados três coeficientes difusivos válidos na camada limite convectiva e que dependem da altura, da distância da fonte e do perfil de velocidade. A abordagem utilizada para a resolução do problema é a técnica da Transformada Integral Generalizada, na qual a equação transformada do problema difusivo-advectivo é resolvida pela técnica da Transformada de Laplace com inversão analítica. Nenhuma aproximação é feita durante a derivação da solução, sendo assim, esta é exata exceto pelo erro de truncamento. O modelo ´e avaliado em condições moderadamente instáveis usando o experimento de Copenhagen. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com dados experimentais e com os resultados da literatura. O modelo proposto mostrou-se satisfatório em relação aos dados dos experimentos difusivos considerados.
Resumo:
Neste trabalho é apresentada uma solução analítica de um problema bidimensional e transiente de dispersão de poluentes atmosféricos. O modelamento utilizado é conhecido na literatura como modelo Kzz para dispersão de poluentes atmosféricos e é representado por uma equação difusivo-advectiva com coeficientes de difusão e advecção variáveis. São utilizados três diferentes coeficientes de difusão nas simulações, bem como as componentes horizontal e vertical do vento são tomadas como variáveis. A solução analítica é gerada através da aplicação da técnica GITT (Generalized Integral Transform Technique) dupla com problema transformado resolvido por Transformada de Laplace e diagonalização de matrizes. Filtros matemáticos são usados para homogenizar as condições de contorno viabilizando o uso da técnica citada. Além disso, o tipo de filtro matemático utilizado permite a sensível diminuição do custo computacional. Resultados numéricos são obtidos e comparados com dados experimentais e outras soluções da literatura.
Resumo:
A modelagem matemática de problemas importantes e significativos da engenharia, física e ciências sociais pode ser formulada por um conjunto misto de equações diferenciais e algébricas (EADs). Este conjunto misto de equações deve ser previamente caracterizado quanto a resolubilidade, índice diferencial e condições iniciais, para que seja possível utilizar um código computacional para resolvê-lo numericamente. Sabendo-se que o índice diferencial é o parâmetro mais importante para caracterizar um sistema de EADs, neste trabalho aplica-se a redução de índice através da teoria de grafos, proposta por Pantelides (1988). Este processo de redução de índice é realizado numericamente através do algoritmo DAGRAFO, que transforma um sistema de índice superior para um sistema reduzido de índice 0 ou 1. Após esta etapa é necessário fornecer um conjunto de condições inicias consistentes para iniciar o código numérico de integração, DASSLC. No presente trabalho discute-se três técnicas para a inicialização consistente e integração numérica de sistemas de EADs de índice superior. A primeira técnica trabalha exclusivamente com o sistema reduzido, a segunda com o sistema reduzido e as restrições adicionais que surgem após a redução do índice introduzindo variáveis de restrição, e a terceira técnica trabalha com o sistema reduzido e as derivadas das variáveis de restrição. Após vários testes, conclui-se que a primeira e terceira técnica podem gerar um conjunto solução mesmo quando recebem condições iniciais inconsistentes. Para a primeira técnica, esta característica decorre do fato que no sistema reduzido algumas restrições, muitas vezes com significado físico importante, podem ser perdidas quando as equações algébricas são diferenciadas. Trabalhando com o sistema reduzido e as derivadas das variáveis de restrição, o erro da inicialização é absorvido pelas variáveis de restrição, mascarando a precisão do código numérico. A segunda técnica adotada não tem como absorver os erros da inicialização pelas variáveis de restrição, desta forma, quando as restrições adicionais não são satisfeitas, não é gerada solução alguma. Entretanto, ao aplicar condições iniciais consistentes para todas as técnicas, conclui-se que o sistema reduzido com as derivadas das variáveis restrição é o método mais conveniente, pois apresenta melhor desempenho computacional, inclusive quando a matriz jacobiana do sistema apresenta problema de mau condicionamento, e garante que todas as restrições que compõem o sistema original estejam presentes no sistema reduzido.
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
Neste trabalho, apresentaremos uma solução analítica, aplicando o método da decomposição de Adomian, para as equações da cinética pontual para reatividade arbitrária, um sistema de equações diferenciais ordinárias do tipo "Stiff". Apresen- taremos, ainda, simulações numéricas para as reatividades do tipo constante, linear, senoidal e exponencial, bem como faremos comparações com resultados disponíveis na literatura.
Resumo:
Neste trabalho o método LTSN é utilizado para resolver a equação de transporte de fótons para uma placa plana heterogênea, modelo de multigrupo, com núcleo de espalhamento de Klein-Nishina, obtendo-se o fluxo de fótons em valores discretos de energia. O fluxo de fótons, juntamente com os parâmetros da placa foram usados para o cálculo da taxa de dose absorvida e do fator de buildup. O método LTSN consiste na aplicação da transformada de Laplace num conjunto de equações de ordenadas discretas, fornece uma solução analítica do sistema de equações lineares algébricas e a construção dos fluxos angulares pela técnica de expansão de Heaviside. Essa formulação foi aplicada ao cálculo de dose absorvida e ao fator de Buildup, considerando cinco valores de energia. Resultados numéricos são apresentados.
Resumo:
A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.
Resumo:
Vários métodos analíticos, numéricos e híbridos podem ser utilizados na solução de problemas de difusão e difusão-advecção. O objetivo deste trabalho é apresentar dois métodos analíticos para obtenção de soluções em forma fechada da equação advectivo-difusiva em coordenadas cartesianas que descreve problemas de dispersão de poluentes na água e na atmosfera. Um deles é baseado em regras de manipulação de exponenciais de operadores diferenciais, e o outro consiste na aplicação de simetrias de Lie admitidas por uma equação diferencial parcial linear. Desenvolvem-se regras para manipulação de exponenciais de operadores diferenciais de segunda ordem com coeficientes constantes e para operadores advectivo-difusivos. Nos casos em que essas regras não podem ser aplicadas utiliza-se uma formulação para a obtenção de simetrias de Lie, admitidas por uma equação diferencial, via mapeamento. Define-se um operador diferencial com a propriedade de transformar soluções analíticas de uma dada equação diferencial em novas soluções analíticas da mesma equação. Nas aplicações referentes à dispersão de poluentes na água, resolve-se a equação advectivo-difusiva bidimensional com coeficientes variáveis, realizando uma mudança de variáveis de modo a reescrevê-la em termos do potencial velocidade e da função corrente correspondentes ao respectivo escoamento potencial, estendendo a solução para domínios de contornos arbitrários Na aplicação referente ao problema de dispersão de poluentes na atmosfera, realiza-se uma mudança de variáveis de modo a obter uma equação diferencial parcial com coeficientes constantes na qual se possam aplicar as regras de manipulação de exponenciais de operadores diferenciais. Os resultados numéricos obtidos são comparados com dados disponíveis na literatura. Diversas vantagens da aplicação das formulações apresentadas podem ser citadas, a saber, o aumento da velocidade de processamento, permitindo a obtenção de solução em tempo real; a redução da quantidade de memória requerida na realização de operações necessárias para a obtenção da solução analítica; a possibilidade de dispensar a discretização do domínio em algumas situações.
Resumo:
O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.
Resumo:
Neste trabalho estudamos um sistema de equações diferenciais parabólicas que modelam um processo de difusão-reação em duas dimensões da mistura molecular e reação química irreverssível de um só passo entre duas espécies químicas A e B para formar um produto P. Apresentamos resultados analíticos e computacionais relacionados à existência e unicidade da solução, assim como estimativas do erro local e global utilizando elementos finitos. Para os resultados analíticos usamos a teoria de semigrupos e o principio do m´aximo, e a simulação numérica é feita usando diferenças finitas centrais e o esquema simplificado de Ruge-Kutta. As estimativas do erro local para o problema semi-discretizado são estabelecidas usando normas de Sobolev, e para estimar o erro global usamos shadowing finito a posteriori. Os resultados computacionais obtidos mostram que o comportamento da solução está dentro do esperado e concorda com resultados da referências. Assim mesmo as estimativas do erro local e global são obtidas para pequenos intervalos de tempo e assumindo suficiente regularidade sobre a velocidade do fluído no qual realiza-se o processo. Destacamos que a estimativa do erro global usando shadowing finito é obtida sob hipóteses a posteriori sobre o operador do problema e o forte controle da velocidade numa vizinhança suficientemente pequena.
Resumo:
As técnicas utilizadas em sistemas de reconhecimento automático de locutor (RAL) objetivam identificar uma pessoa através de sua voz, utilizando recursos computacionais. Isso é feito a partir de um modelamento para o processo de produção da voz. A modelagem detalhada desse processo deve levar em consideração a variação temporal da forma do trato vocal, as ressonâncias associadas à sua fisiologia, perdas devidas ao atrito viscoso nas paredes internas do trato vocal, suavidade dessas paredes internas, radiação do som nos lábios, acoplamento nasal, flexibilidade associada à vibração das cordas vocais, etc. Alguns desses fatores são modelados por um sistema que combina uma fonte de excitação periódica e outra de ruído branco, aplicadas a um filtro digital variante no tempo. Entretanto, outros fatores são desconsiderados nesse modelamento, pela simples dificuldade ou até impossibilidade de descrevê-los em termos de combinações de sinais, filtros digitais, ou equações diferenciais. Por outro lado, a Teoria dos Sistemas Dinâmicos Não-Lineares ou Teoria do Caos oferece técnicas para a análise de sinais onde não se sabe, ou não é conhecido, o modelo detalhado do mecanismo de produção desses sinais. A análise através dessa teoria procura avaliar a dinâmica do sinal e, assumindo-se que tais amostras provêm de um sistema dinâmico não-linear, medidas qualitativas podem ser obtidas desse sistema. Essas medidas não fornecem informações precisas quanto ao modelamento do processo de produção do sinal avaliado, isto é, o modelo analítico é ainda inacessível. Entretanto, pode-se aferir a respeito de suaO problema analisado ao longo deste trabalho trata da busca de novos métodos para extrair informações úteis a respeito do locutor que produziu um determinado sinal de voz. Com isso, espera-se conceber sistemas que realizem a tarefa de reconhecer um pessoa automaticamente através de sua voz de forma mais exata, segura e robusta, contribuindo para o surgimento de sistemas de RAL com aplicação prática. Para isso, este trabalho propõe a utilização de novas ferramentas, baseadas na Teoria dos Sistemas Dinâmicos Não-Lineares, para melhorar a caracterização de uma pessoa através de sua voz. Assim, o mecanismo de produção do sinal de voz é analisado sob outro ponto de vista, como sendo o produto de um sistema dinâmico que evolui em um espaço de fases apropriado. Primeiramente, a possibilidade de utilização dessas técnicas em sinais de voz é verificada. A seguir, demonstra-se como as técnicas para estimação de invariantes dinâmicas não-lineares podem ser adaptadas para que possam ser utilizadas em sistemas de RAL. Por fim, adaptações e automatizações algorítmicas para extração de invariantes dinâmicas são sugeridas para o tratamento de sinais de voz. A comprovação da eficácia dessa metodologia se deu pela realização de testes comparativos de exatidão que, de forma estatisticamente significativa, mostraram o benefício advindo das modificações sugeridas. A melhora obtida com o acréscimo de invariantes dinâmicas da forma proposta no sistema de RAL utilizado nos testes resultou na diminuição da taxa de erro igual (EER) em 17,65%, acarretando um intrínseco aumento de processamento. Para sinais de voz contaminados com ruído, o benefício atingido com o sistema proposto foi verificado para relações sinal ruído (SNRs) maiores que aproximadamente 5 dB. O avanço científico potencial advindo dos resultados alcançados com este trabalho não se limita às invariantes dinâmicas utilizadas, e nem mesmo à caracterização de locutores. A comprovação da possibilidade de utilização de técnicas da Teoria do Caos em sinais de voz permitirá expandir os conceitos utilizados em qualquer sistema que processe digitalmente sinais de voz. O avanço das técnicas de Sistemas Dinâmicos Não-Lineares, como a concepção de invariantes dinâmicas mais representativas e robustas, implicará também no avanço dos sistemas que utilizarem esse novo conceito para tratamento de sinais vocais.
Resumo:
Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.