46 resultados para Equação de difusão

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é obter uma nova solução analítica para a equação de advecção-difusão. Para tanto, considera-se um problema bidimensional difusivo-advectivo estacionário com coeficiente de difusão turbulenta vertical variável que modela a dispersão de poluentes na atmosfera. São utilizados três coeficientes difusivos válidos na camada limite convectiva e que dependem da altura, da distância da fonte e do perfil de velocidade. A abordagem utilizada para a resolução do problema é a técnica da Transformada Integral Generalizada, na qual a equação transformada do problema difusivo-advectivo é resolvida pela técnica da Transformada de Laplace com inversão analítica. Nenhuma aproximação é feita durante a derivação da solução, sendo assim, esta é exata exceto pelo erro de truncamento. O modelo ´e avaliado em condições moderadamente instáveis usando o experimento de Copenhagen. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com dados experimentais e com os resultados da literatura. O modelo proposto mostrou-se satisfatório em relação aos dados dos experimentos difusivos considerados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho apresenta-se uma solução analítica para a dispersão vertical turbulenta em uma Camada Limite Convectiva e em uma Camada Limite Estável. A equação analisada considera a difusão com velocidades finitas, o que representa o transporte turbulento fisicamente correto. Considerando o caráter não-local, adicionam-se na equação que representa uma fonte área instantânea, termos como: o tempo de relaxação, a assimetria, a escala de tempo Lagrangeana e a velocidade turbulenta vertical. A solução é obtida utilizando-se a técnica da Transformada de Laplace. Os parâmetros que encerram a turbulência são derivados da teoria de difusão estatística de Taylor combinada com a teoria de similaridade. Foram utilizados coeficientes de difusão especáficos para cada uma das camadas. A transformada inversa é obtida através do esquema numérico de quadratura Gaussiana. São apresentadas várias simulações para diferentes alturas de fonte área e obtém-se o valor da concentração para alturas próximas ao solo e próximas ao topo da Camada Limite Planetária. A inserção do termo de contra-gradiente na equação resultou em uma pequena influência na concentração de poluentes, observada de forma mais expressiva na Camada Limite Convectiva.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho é apresentada a solução da equação de difusão-advecção transiente para simular a dispersão de poluentes na Camada Limite Planetária. A solução é obtida através do método analítico GILTT (Generalized Integral Laplace Transform Technique) e da técnica de inversão numérica da quadratura de Gauss. A validação da solução é comprovada utilizando as concentraçãos obtidas a partir do modelo com as obtidas experimentalmente pelo Experimento de Copenhagen. Nesta comparação foram utilizados os perfis de vento potencial e logaritmo e os parâmetros de turbulência propostos por Degrazia et al (1997) [19] e (2002) [17]. Os melhores resultados foram obtidos utilizando o perfil de vento potencial e o coeficiente de difusão propostos por Degrazia et al (1997). A influência da velocidade vertical é mostrada através do comportamento das concentrações de poluentes na pluma. Além disso, as velocidades verticais e longitudinais geradas pelo Large Eddy Simulation (LES) foram colocadas no modelo para poder simular uma camada limite turbulenta mais realística, a qual apresentou resultados satisfatórios quando comparados com os disponíveis na literatura.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neste trabalho tratamos da solução de um problema não linear do tipo tração-difusão, na modelagem de dispersão de insetos. Começamos estabelecendo uma lei de conservação e a partir desta, deduzimos algumas equações importantes para o desenvolvimento do nosso estudo, tais como a equação de convecção, de difusão e simultaneamente convecção e difusão. Se considerarmos uma escala de tempo que possibilite a adição ou retirada de indivíduos no meio, conforme seja considerada reprodução, migração ou morte, podemos acrescentar ao processo difusivo um termo de reação, obtendo então, a equação do tipo reação-difusão. Se o temp de reação for deendendee da densidade populacional e do tipo logístico, obtém-se a equação de Fischer. Dessa equação abordamos alguns aspectos, tais como, determinação dos estados estacionários, análise da estabillidade dos mesmos, representação gráfica no plano de fase e por último investigamos a existência de solução do tipo onda viajante. Abordamos, também, alguns exemplos apresentados na literatura, envolvendo equação da difusão com coeficiente constante e com coeficiente dependente da densidade populacional. Além disso, apresentamos o resultados obtidos com a modelagem em tempo discreto, a partir de um trabalho experimental com besouros marcados para o experimento e depois liberados Banks et al (1985) , em que os autores admitiram uma variação temporal e a partir dos dados obtidos fizeram uma estimativa para o coeficiente de difusão D (t), bem como para o coeficiente de decaimento α(t) do termo de reação linear em u. Construimos curvas que se ajustam a essas alternativas e apresentamos esses coeficientes em versão continua D (t) e α(t), dependentes da variável tempo t. Através de uma abordagem numérica, os modelos foram comparadas da variável tempo t. Através de uma abordagem numérica, os modelos foram comparados para diversos casos, usando diferentes combinação de D constante e D variando no tempo, a constante e a variando no tempo. Além disso, analisamos tambén, o efeito da substituição do coeficiente de difusão D constante por D(t) na equação de Fisher.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

No presente trabalho, obtemos e analisamos diversas propriedades das soluções u(·, t) da equação de difusão linear (equação do calor em meios unidimensionais homogêneos) ut = μuxx x 2 R, t > 0 correspondentes a estados iniciais u(x, 0) = u0(x), com u0 2 Lp(R), para algum 1 p < 1; bem como da equação de Burgers ut + cuux = μuxx x 2 R, t > 0 onde c, μ são constantes dadas, sendo c 6= 0 e μ > 0 e ainda assumindo u(x, 0) = u0(x) com u0 2 Lp(R) para 1 p < 1, e limitado. Estudamos também a equação mais geral da forma ut + f(u)x = μuxx x 2 R, t > 0 discutindo várias propriedades importantes das soluções, associadas a estados iniciais u0 2 Lp(R) \ L1(R) para algum 1 p < 1. Em particular, examinamos o comportamento de ku(·, t)kLr(R), p r 1, para t >> 1, e diversas propriedades relacionadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A equação de difusão-advecção é muito utilizada no campo de estudos da poluição atmosférica na determinação da concentração de poluentes. Uma maneira de solucionar o problema de fechamento desta equação está baseada na hipótese de transporte por gradiente que, em analogia com a difusão molecular, assume que o fluxo turbulento de concentração é proporcional à magnitude do gradiente de concentração média. Neste trabalho, diferentemente do modo tradicional, utiliza-se uma equação genérica para a difusão turbulenta considerando-se que o fluxo mais a sua derivada são proporcionais ao gradiente médio. Desta forma, obtém-se uma equação que leva em conta a assimetria no processo de dispersão de poluentes atmosféricos. Portanto, a proposta do presente trabalho é a obtenção da solução analítica desta nova equação utilizando-se a técnica da Transformada de Laplace, considerando-se a Camada Limite Planetária (CLP) como um sistema multicamadas. Os parâmetros que encerram a turbulência sâo derivados da teoria de difusão estatística de Taylor combinada com a teoria de similaridade convectiva válidos para grandes tempos de difusão. Finalmente, na avaliação da performance deste modelo que considera a assimetria no processo de dispersão de poluentes atmosféricos, utilizam-se os dados experimentais de Copenhagen e Prairie Grass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nesta dissertação visa-se estudar e propor alternativas de solução para a proteção de estruturas e sistemas elétricos contra fogo numa unidade de craqueamento catalítico de uma refinaria de petróleo, por meio de proteção passiva. A proteção passiva tem por finalidade garantir a integridade das estruturas sujeitas a incêndio, durante um determinado período de tempo, para possibilitar, no caso da refinaria, a realização de procedimentos de parada da unidade de forma segura e controlar o incêndio a fim de diminuir a possibilidade de propagação do fogo para outras áreas. Com base em técnicas de análise de riscos fez-se a identificação de zonas potencialmente sujeitas a cenários de acidente envolvendo jato de fogo e/ou incêndio em poça. A delimitação das áreas onde haveria necessidade de proteção passiva foi realizada com base em modelos para jatos de fogo e incêndio em poça já estabelecidos na literatura. O dimensionamento da proteção passiva de estruturas e sistemas elétricos com o uso de diversos materiais usados comercialmente para este fim foi estimado com base em equações empíricas desenvolvidas por Jeanes, 1980, Stanzak, 1973 e PABCO, 1984, e, para alguns casos particulares foi feita uma verificação por solução numérica da equação da condução do calor em meio sólido.Assim, foram determinados quais os materiais mais adequados em cada caso de aplicação e qual a espessura em que deve ser aplicado para que a temperatura no elemento estrutural ou no sistema elétrico não atinja a sua determinada temperatura crítica em um período de tempo pré-determinado. Para os casos de elementos estruturais como colunas de sustentação da unidade de seção cilíndrica, o principal material para proteção passiva é a argamassa projetada e para perfil I, é o emprego de placas de gesso. Já para o caso de sistemas elétricos, podem ser utilizadas tanto tintas intumescentes quanto as mantas reforçadas com fibras minerais, esta escolha depende da geometria do sistema em que será empregado. Da comparação entre estes dois métodos pode-se concluir que o dimensionamento da proteção passiva fazendo o uso das correlações empíricas é menos conservativo que para o caso do uso da equação da difusão do calor resolvida por método numérico. Porém, os resultados diferem dentro de um limite considerado aceitável (em torno de 15%) levando-se em consideração os erros embutidos em cada método de cálculo. É importante mencionar que as correlações empíricas são de mais simples aplicação por possuir apenas operações matemáticas básicas. Usando as correlações empíricas para os perfis cilíndricos de aço (diâmetro de 0,1524 m e espessura de parede de 0,0254 m), a espessura de revestimento estimada com o uso das correlações empíricas necessária para garantir que a temperatura na interface entre os dois materiais não atinja 550°C em duas horas seria de 13,5 mm para argamassa projetada, 19,7 mm para vermiculita com silicato de sódio e 34,5 mm para recobrimento com concreto com proteção do tipo contorno. Fazendo o mesmo cálculo pelo método numérico proposto, os resultados foram de 15,53 mm para argamassa projetada, 22,06 mm para vermiculita com silicato de sódio e 38,98 mm para recobrimento com concreto com proteção do tipo contorno. Fazendo o mesmo cálculo pelo método numérico proposto, os resultados foram de 15,53 mm para argamassa projetada, 22,06 mm para vermiculita com silicato de sódio e 38,98 mm para recobrimento com concreto com proteção do tipo contorno. Cabe ressaltar que com a realização desta dissertação busca-se uma integração entre o mestrado acadêmico e o meio empresarial com o desenvolvimento de trabalhos de natureza acadêmica que tenham aplicação direta na prática. Espera-se assim permitir que Universidade dê retorno à sociedade que a mantém e propiciar que setores da sociedade possam usufruir da capacidade disponível na academia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese apresenta um estudo do comportamento térmico de um coletor solar acumulador e desenvolve uma metodologia para medir a sua eficiência diária. O coletor solar acumulador está instalado na face norte do prédio de Energia Solar da UFRGS e possui cerca de 26 m2. É constituído de uma massa espessa de concreto com uma superfície absorvente feita de tijolos, possuindo uma cobertura dupla de vidros colocada de modo a deixar um espaço para a circulação de ar. Os raios solares atravessam a cobertura de vidro e aquecem a massa absorvente de tijolo, a qual aquece o ar que é introduzido no interior da construção por efeito de termossifão. Uma das principais características do coletor solar acumulador consiste no fato de que a resposta do coletor é defasada no tempo. Este fenômeno permite que o coletor entregue calor ao ambiente mesmo após o término da radiação solar. Essa defasagem dos picos de energia térmica ocorre devido ao baixo valor da difusividade térmica do concreto. Este trabalho foi dividido em duas etapas. A primeira etapa consistiu na montagem de um calorímetro para controle e monitoração das variáveis envolvidas. No interior do calorímetro foram instaladas 36 garrafas com água. As temperaturas dos conteúdos das garrafas, do coletor solar e as radiações envolvidas foram monitoradas através de 26 sensores de temperatura de CI, 8 sensores resistivos PT100 e dois sensores de radiação fotovoltaicos. Para obter as medidas dos sensores instalados foi feita a montagem de um sistema de aquisição de dados interfaceado a um microcomputador A segunda etapa consistiu na produção de um programa computacional, escrito em linguagem Fortran 90, para simular o comportamento térmico dos diversos elementos constituintes do coletor, determinar a potência térmica do coletor solar e sua eficiência diária. Para a simulação numérica do coletor solar acumulador, adotou-se um modelo simplificado bidimensional do mesmo. Foi integrada, através do Método dos Volumes Finitos, a equação de difusão de calor transiente em 2 dimensões. Na formulação das equações lineares optou-se pelo emprego das diferenças centrais no espaço e formulação explícita no tempo. Ao todo foram produzidas 4 malhas computacionais, com distintos refinamentos e foi realizado o estudo da estabilidade numérica das diversas malhas. Através da montagem experimental obtiveram-se várias características térmicas do comportamento do sistema, entre as quais, a transmitância da cobertura, curvas de temperatura do ar fornecido ao calorímetro e curva da eficiência diária do coletor solar . Através da simulação numérica foi possível determinar a potência térmica que o coletor entrega para o laboratório, a eficiência do coletor, os campos de temperatura e a vazão mássica nos diversos canais interiores do coletor solar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho é obter os parâmetros turbulentos para o crescimento da camada limite planetária (CLP), durante a realizaçãoo do experimento Olad (Overland along wind dispersion experiment), conduzido na transição da noite para o dia. Nesta hora a CLP exibe uma altura, geralmente, pequena, disponibilizando pouco volume para a dispersão dos poluentes. Assim, concentrações superficiais elevadas podem ocorrer, atacando materiais, plantas e a saúde da população. Logo, conhecer os parâmetros do crescimneto é de fundamental importância para o correto modelamento da dispersão atmosférica ao amanhecer. A validação dos parâmetros é realizada a partir da solução da equação da difusão-advecção bidimensional, pelo método da GILTT (Generalized Integral Laplace Transform Technique). São empregados coeficientes de difusão turbulenta (problema de fechamento) dependentes da estabilidade atmosférica. As concentrações superficiais tridimensionais são obtidas através do espalhamento lateral da pluma com distribuição gaussiana. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com os dados experimentais. O modelo proposto mostrou-se aceitável em relação aos dados do experimento.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neste trabalho, são obtidas diversas propriedades (em especial, referentes ao comportamento ao t -+ +00) das soluções u(', t) da equação linear do calor, Ut = div(AV'u), x E JRn, t > O onde A E JRnxné uma matriz constante simétrica e positiva definida, correspondentes a estados iniciais p-somáveis, i.e., u(x, O) = uo(x), Uo E LP(JRn), onde 1 :::;p < 00. Em particular, é examinado o comportamento de Ilu(., t)IILP(lRn) ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dXI quando p = 1, e Ilu(-' t)IILP(lRn)-+ O quando p > 1. São analisadas, também, as taxas de decaimento e o comportamento assintótico das soluções u(', t) de equações de advecção-difusão da forma Ut + divf(u) = div(A(u)V'u), x E JRn, t > O correspondentes a estados iniciais p-somáveis e limitados, i.e., u(x, O)= uo(x), u(', O) E LP(JRn) n LOO(JRn), onde 1 :::;p :::; 2. Novamente, é examinado o comportamento de Ilu(" t)IILP(lRn)ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dxl quando p = 1, e Ilu(" t)IILP(lRn)-+ O quando p > 1. Várias outras propriedades importantes são também discutidas, seguindo principalmente [Silva, 2003], [Crandall e Tartar, 1980], [Hagstrom et al., 2003], [Zingano, 1999], [Zingano, 2004a], [Zingano, 2004b].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vários métodos analíticos, numéricos e híbridos podem ser utilizados na solução de problemas de difusão e difusão-advecção. O objetivo deste trabalho é apresentar dois métodos analíticos para obtenção de soluções em forma fechada da equação advectivo-difusiva em coordenadas cartesianas que descreve problemas de dispersão de poluentes na água e na atmosfera. Um deles é baseado em regras de manipulação de exponenciais de operadores diferenciais, e o outro consiste na aplicação de simetrias de Lie admitidas por uma equação diferencial parcial linear. Desenvolvem-se regras para manipulação de exponenciais de operadores diferenciais de segunda ordem com coeficientes constantes e para operadores advectivo-difusivos. Nos casos em que essas regras não podem ser aplicadas utiliza-se uma formulação para a obtenção de simetrias de Lie, admitidas por uma equação diferencial, via mapeamento. Define-se um operador diferencial com a propriedade de transformar soluções analíticas de uma dada equação diferencial em novas soluções analíticas da mesma equação. Nas aplicações referentes à dispersão de poluentes na água, resolve-se a equação advectivo-difusiva bidimensional com coeficientes variáveis, realizando uma mudança de variáveis de modo a reescrevê-la em termos do potencial velocidade e da função corrente correspondentes ao respectivo escoamento potencial, estendendo a solução para domínios de contornos arbitrários Na aplicação referente ao problema de dispersão de poluentes na atmosfera, realiza-se uma mudança de variáveis de modo a obter uma equação diferencial parcial com coeficientes constantes na qual se possam aplicar as regras de manipulação de exponenciais de operadores diferenciais. Os resultados numéricos obtidos são comparados com dados disponíveis na literatura. Diversas vantagens da aplicação das formulações apresentadas podem ser citadas, a saber, o aumento da velocidade de processamento, permitindo a obtenção de solução em tempo real; a redução da quantidade de memória requerida na realização de operações necessárias para a obtenção da solução analítica; a possibilidade de dispensar a discretização do domínio em algumas situações.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho é desenvolvida uma solução semi-analítica para a Equação de Langevin assintótica (Equação de Deslocamento Aleatório) aplicada à dispersão de poluentes na Camada Limite Convectiva (CLC). A solução tem como ponto de partida uma equação diferencial de primeira ordem para o deslocamento aleatório, sobre a qual é aplicado o Método Iterativo de Picard. O novo modelo é parametrizado por um coeficiente de difusão obtido a partir da Teoria de Difusão Estatística de Taylor e de um modelo para o espectro de turbulência, assumindo a supersposição linear dos efeitos de turbulência térmica e mecânica. A avaliação do modelo é realizada através da comparação com dados de concentração medidos durante o experimento de dispersão de Copenhagen e com resultados obtidos por outros quatro modelos: modelo de partículas estocástico para velocidade aleatória (Modelo de Langevin), solução analítica da equação difusão-advecção, solução numérica da equação difusão-advecção e modelo Gaussiano. Uma análise estatística revela que o modelo proposto simula satisfatoriamente os valores de concentração observados e apresenta boa concordância com os resultados dos outros modelos de dispersão. Além disso, a solução através do Método Iterativo de Picard pode apresentar algumas vantagem em relação ao método clássico de solução.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, examinamos em detalhe resultados recentes apresentados em [Zingano, 1999], [Zingano, 2004], [Zingano, 1996a] [T. Hagstrom, 2004] sobre o comportamento de soluções para equações (escalares) de ad vecção-difusão nãolineares, da forma Ut + div(f(u)) = div(A(u)V'u), x E ]Rn, t > O correspondentes a estados iniciais u(., O) E LI(]Rn) n DXJ(JRn).Aqui, A(u) E ]Rn é uniformemente positiva definida para todos os valores de u em questão, e f( u) = (f1(u),..., fn(u)) corresponde ao fluxo advectivo, com A, f suaves. Entre os vários resultados, tem-se em particular os limites assintóticos . !!. (I_l) Iml (47rÀ)~ 11mt2 p Ilu(" t)IILP(JRn) = (4 À)!!. - , t-++oo 7r 2 P para cada 1 :::;P :::;00, uniformemente em p, bem como lim t~(l-i) Ilu(" t) - u(',t)IILP(JRn) = O, t-++oo 1:::; p:::; 00 para duas soluçõesu(', t), u(', t) quaisquer correspondentesa estados iniciais u(', O),u(', O)E LI (]Rn) n Loo(]Rn) com a mesma massa, isto é, r u(x, O)dx = r u(x,O)dx JJRn JJRn Outra propriedade fundamental, válida em dimensão n ;:::2, é lim t%(l-~) Ilu(" t) - v(', t) IILP(JRn) = O t-++oo para cada 1 :::;p :::; 00, se v(', t) é solução da equação de advecção-difusão linear Vt + f (O) . V'v= div(A(O)V'v), x E ]Rn, t > O, com u(', O),v(', O) E U(]Rn) n Loo(JRn) tendo a mesma massa. Outros resultados de interesse são também discutidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usamos a teoria quase-linear para estudar os efeitos do transporte radial de partículas na eficiência da geração de corrente por ondas do tipo híbrida inferior (lower hybrid ou LH), em um tokamak modelado como uma lâmina. Nossos resultados numéricos foram obtidos com cinco diferentes modelos do termo de transporte e indicaram que embora a potência absorvida e a corrente gerada possam ser modificadas por efeito do transporte, a proporção de variação dessas quantidades não é muito sensível a uma forma particular do termo de transporte. Na formulação quase-linear utilizada, a evolução no tempo da função distribuição de elétrons, em um dado ponto da geometria de lâmina proposta, ocorre sob a ação de ondas do tipo híbrida inferior, colisões e transporte, e é descrita pela seguinte equação: 8rfe = (8rfehH + (8rfe)COL + (8rfeh . Oterceiro termo pretende demonstrar a natureza e a magnitude dos efeitos de transporte, e é dado pela seguinte forma: (8rfeh = 8s [DT(S) 8sie] , com um coeficiente para difusão espacial dependente de posição. Utilizamos cinco formas totalmente arbitrárias para a dependência de posição, com as quais pretendemos verificar a sensibilidade do processo de geração de corrente a aspectos do termo de difusão.