4 resultados para Dimensional regularization
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.
Resumo:
O ICTM (Interval Categorizer Tesselation Model), objeto da presente tese, é um modelo geral para análise de espaços de natureza geométrica, baseado em tesselaçoes, que é capaz de produzir uma categorização confiável de conjunto de pontos de um dado espaço, de acordo com múltiplas características dos pontos, cada característica correspondendo a uma camada do modelo. Por exemplo, na análise de terrenos geográficos, uma região geográfica pode ser analisada de acordo com a sua topografia, vegetaçao, demografia, dados econômicos etc, cada uma gerando uma subdivisão diferente da região. O modelo geral baseado em tesselações não está restrito, porém, a análise de espaços bi-dimensionais. O conjunto dos pontos analisados pode pertencer a um espaço multidimensional, determinando a característica multi-dimensional de cada camada. Um procedimento de projeção das categorizações obtidas em cada camada sobre uma camada básica leva a uma categorização confiavel mais significante, que combina em uma só classificação as análises obtidas para cada característica. Isto permite muitas análises interessantes no que tange a dependência mútua das características. A dimensão da tesselação pode ser arbitrária ou escolhida de acordo com algum critério específico estabelecido pela aplicação. Neste caso, a categorização obtida pode ser refinada, ou pela re-definição da dimensão da tesselação ou tomando cada sub-região resultante para ser analisada separadamente A formalização nos registradores pode ser facilmente recuperada apenas pela indexação dos elementos das matrizes, em qualquer momento da execução. A implementação do modelo é naturalmente paralela, uma vez que a análise é feita basicamente por regras locais. Como os dados de entrada numéricos são usualmente suscetíveis a erros, o modelo utiliza a aritmética intervalar para se ter um controle automático de erros. O modelo ICTM também suporta a extração de fatos sobre as regiões de modo qualitativo, por sentenças lógicas, ou quantitativamente, pela análise de probabilidade. Este trabalho recebe apoio nanceiro do CNPq/CTPETRO e FAPERGS.
Resumo:
O processamento de imagens tem sido amplamente utilizado para duas tarefas. Uma delas é o realce de imagens para a posterior visualização e a outra tarefa é a extração de informações para análise de imagens. Este trabalho apresenta um estudo sobre duas teorias multi-escalas chamadas de espaço de escala e transformada wavelet, que são utilizadas para a extração de informações de imagens. Um dos aspectos do espaço de escalas que tem sido amplamente discutido por diversos autores é a sua base (originalmente a gaussiana). Tem se buscado saber se a base gaussiana é a melhor, ou para quais casos ela é a melhor. Além disto, os autores têm procurado desenvolver novas bases, com características diferentes das pertencentes à gaussiana. De posse destas novas bases, pode-se compará-las com a base gaussiana e verificar onde cada base apresenta melhor desempenho. Neste trabalho, foi usada (i) a teoria do espaço de escalas, (ii) a teoria da transformada wavelet e (iii) as relações entre elas, a fim de gerar um método para criar novas bases para o espaço de escalas a partir de funções wavelets. O espaço de escala é um caso particular da transformada wavelet quando se usam as derivadas da gaussiana para gerar os operadores do espaço de escala. É com base nesta característica que se propôs o novo método apresentado. Além disto, o método proposto usa a resposta em freqüência das funções analisadas. As funções bases do espaço de escala possuem resposta em freqüência do tipo passa baixas. As funções wavelets, por sua vez, possuem resposta do tipo passa faixas Para obter as funções bases a partir das wavelets faz-se a integração numérica destas funções até que sua resposta em freqüência seja do tipo passa baixas. Algumas das funções wavelets estudadas não possuem definição para o caso bi-dimensional, por isso foram estudadas três formas de gerar funções bi-dimensionais a partir de funções unidimensionais. Com o uso deste método foi possível gerar dez novas bases para o espaço de escala. Algumas dessas novas bases apresentaram comportamento semelhante ao apresentado pela base gaussiana, outras não. Para as funções que não apresentaram o comportamento esperado, quando usadas com as definições originais dos operadores do espaço de escala, foram propostas novas definições para tais operadores (detectores de borda e bolha). Também foram geradas duas aplicações com o espaço de escala, sendo elas um algoritmo para a segmentação de cavidades cardíacas e um algoritmo para segmentação e contagem de células sanguíneas.