2 resultados para Clinical Data Warehouse
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Sistemas de tomada de decisão baseados em Data Warehouse (DW) estão sendo cada dia mais utilizados por grandes empresas e organizações. O modelo multidimensional de organização dos dados utilizado por estes sistemas, juntamente com as técnicas de processamento analítico on-line (OLAP), permitem análises complexas sobre o histórico dos negócios através de uma simples e intuitiva interface de consulta. Apesar dos DWs armazenarem dados históricos por natureza, as estruturas de organização e classificação destes dados, chamadas de dimensões, não possuem a rigor uma representação temporal, refletindo somente a estrutura corrente. Para um sistema destinado à análise de dados, a falta do histórico das dimensões impossibilita consultas sobre o ambiente real de contextualização dos dados passados. Além disso, as alterações dos esquemas multidimensionais precisam ser assistidas e gerenciadas por um modelo de evolução, de forma a garantir a consistência e integridade do modelo multidimensional sem a perda de informações relevantes. Neste trabalho são apresentadas dezessete operações de alteração de esquema e sete operações de alteração de instâncias para modelos multidimensionais de DW. Um modelo de versões, baseado na associação de intervalos de validade aos esquemas e instâncias, é proposto para o gerenciamento dessas operações. Todo o histórico de definições e de dados do DW é mantido por esse modelo, permitindo análises completas dos dados passados e da evolução do DW. Além de suportar consultas históricas sobre as definições e as instâncias do DW, o modelo também permite a manutenção de mais de um esquema ativo simultaneamente. Isto é, dois ou mais esquemas podem continuar a ter seus dados atualizados periodicamente, permitindo assim que as aplicações possam consultar dados recentes utilizando diferentes versões de esquema.
Resumo:
Data Warehouse (DW) é um processo que aglutina dados de fontes heterogêneas, incluindo dados históricos e dados externos para atender à necessidade de consultas estruturadas e ad-hoc, relatórios analíticos e de suporte de decisão. Já um Case-Based Reasoning (CBR) é uma técnica de Inteligência Artificial (AI – Artificial Intelligence) para a representação de conhecimento e inferência, que propõe a solução de novos problemas adaptando soluções que foram usadas para resolver problemas anteriores. A descrição de um problema existente, ou um caso é utilizado para sugerir um meio de resolver um novo problema, avisar o usuário de possíveis falhas que ocorreram anteriormente e interpretar a situação atual. Esta dissertação tem por objetivo apresentar um estudo do uso de um DW combinado com um CBR para a verificação de “risco” de inadimplência no setor de telecomunicações. Setor este que devido as grandes mudanças que ocorreram no mercado, que passam desde a privatização do setor e a entrada de novas operadoras fixas e celulares, criando um ambiente de concorrência, anteriormente inexistente, possibilitando assim ao cliente trocar de operadora ou até mesmo deixar a telefonia fixa e ficar somente com a celular, e vai até ao fato da estabilização econômica e as novas práticas de mercado, que determinou a baixa das multas, tornando assim compensador aos clientes deixar as faturas vencidas a perder juros de aplicações ou pagar juros bancários para quitar a sua dívida, visto que a empresa telefônica só pode aplicar as sanções com o prazo de 30 dias. Este trabalho mostra o desenvolvimento de um CBR para aplicação na área de Crédito e Cobrança, onde são detalhados os vários passos, a utilização do mesmo junto ao um DW, o que proporciona a comparação com desenvolvimento de outros sistemas similares e as diferenças (vantagens e desvantagens) que isso traz ao mesmo.