4 resultados para Cauchy, Teorema integral de

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho estudamos três generalizações para o último Teorema de Fermat. A primeira generalização trata de expoentes negativos e de expoentes racionais. Além de mostrar em que casos estas equações possuem soluções, damos uma caracterização completa para todas as soluções inteiras não-nulas existentes. A segunda generalização também trata de expoentes racionais, porém num contexto mais amplo. Aqui permitimos que as raízes n-ésimas sejam complexas, não necessariamente reais. Na terceira generalização vemos que o último Teorema de Fermat também vale para expoentes inteiros gaussianos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo principal deste trabalho é apresentar um método recursivo para a determinação da resposta forçada de sistema de segunda ordem na forma de uma íntegra de concolução, proveniente da utilização de propriedades de transição da resposta impulso de tais sistemas. Descrevem-se também diversos métodos analíticos e numéricos desenvolvidos para o cálculo da resposta forçada, bem como as limitações de cada método. As vantagens do método recursivo proposto são notáveis já que não é requerido o cálculo de autovalores das matrizes nem a redução à primeira ordem, e nem o uso de hipóteses adicionais sobre natureza dos coeficientes matriciais do sistema. Como aplicação do método proposto, considera-se o cálculo da resposta dinâmica de estruturas flexíveis sujeitas a excitações arbitrárias tais como terremotos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foram conduzidos dois ensaios de metabolismo com suínos em crescimento para avaliar o efeito do tratamento térmico sobre a digestibilidade de grão de soja integral. No ensaio 1 foram utilizados 18 animais distribuídos em 6 dietas, à base de amido de milho e grão de soja, em um arranjo fatorial 3*2, composto por três tratamentos de calor submetidos ao grão (cru, AUTOCLAVADO e AUTOCLAVADO o dobro tempo) e dois níveis de lisina (85 e 100% das exigências do NRC (1988)). No ensaio 2 foram utilizados 18 suínos distribuídos em 18 dietas, à base de amido de milho e grão de soja (autoclavado ou autoclavado o dobro tempo) em um arranjo fatorial 3x3x2, composto por três níveis de lisina (80, 100 e 120% NRC (1988)), três suplementações de aminoácidos (0, metionina e treonina) dois tempos de tratamento térmico (autoclavado e dobro do tempo). No ensaio 1 foi observado efeito do tratamento térmico (P< 0,004) e do nível de lisina (P= 0,009) sobre o ganho de peso e do tratamento térmico (P= 0,006) sobre o consumo de matéria seca. Não foram observados efeitos do tratamento térmico e do nível de lisina sobre os coeficientes de digestibilidade da matéria seca, da proteína e da energia das dietas. No ensaio 2 foi observado efeito do nível de lisina (P= 0,008) sobre a excreção fecal de proteína bruta e de energia bruta (P= 0,003) e do tratamento térmico sobre a excreção fecal da energia bruta (P= 0,04).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.