2 resultados para Affective intelligence
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
Cada vez mais o tempo acaba sendo o diferencial de uma empresa para outra. As empresas, para serem bem sucedidas, precisam da informação certa, no momento certo e para as pessoas certas. Os dados outrora considerados importantes para a sobrevivência das empresas hoje precisam estar em formato de informações para serem utilizados. Essa é a função das ferramentas de “Business Intelligence”, cuja finalidade é modelar os dados para obter informações, de forma que diferencie as ações das empresas e essas consigam ser mais promissoras que as demais. “Business Intelligence” é um processo de coleta, análise e distribuição de dados para melhorar a decisão de negócios, que leva a informação a um número bem maior de usuários dentro da corporação. Existem vários tipos de ferramentas que se propõe a essa finalidade. Esse trabalho tem como objetivo comparar ferramentas através do estudo das técnicas de modelagem dimensional, fundamentais nos projetos de estruturas informacionais, suporte a “Data Warehouses”, “Data Marts”, “Data Mining” e outros, bem como o mercado, suas vantagens e desvantagens e a arquitetura tecnológica utilizada por estes produtos. Assim sendo, foram selecionados os conjuntos de ferramentas de “Business Intelligence” das empresas Microsoft Corporation e Oracle Corporation, visto as suas magnitudes no mundo da informática.
Resumo:
This work proposes an animated pedagogical agent that has the role of providing emotional support to the student: motivating and encouraging him, making him believe in his self-ability, and promoting a positive mood in him, which fosters learning. This careful support of the agent, its affective tactics, is expressed through emotional behaviour and encouragement messages of the lifelike character. Due to human social tendency of anthropomorphising software, we believe that a software agent can accomplish this affective role. In order to choose the adequate affective tactics, the agent should also know the student’s emotions. The proposed agent recognises the student’s emotions: joy/distress, satisfaction/disappointment, anger/gratitude, and shame, from the student’s observable behaviour, i. e. his actions in the interface of the educational system. The inference of emotions is psychologically grounded on the cognitive theory of emotions. More specifically, we use the OCC model which is based on the cognitive approach of emotion and can be computationally implemented. Due to the dynamic nature of the student’s affective information, we adopted a BDI approach to implement the affective user model and the affective diagnosis. Besides, in our work we profit from the reasoning capacity of the BDI approach in order for the agent to deduce the student’s appraisal, which allows it to infer the student’s emotions. As a case study, the proposed agent is implemented as the Mediating Agent of MACES: an educational collaborative environment modelled as a multi-agent system and pedagogically based on the sociocultural theory of Vygotsky.