1 resultado para 4-DIMENSIONAL RIEMANNIAN MANIFOLD

em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul


Relevância:

100.00% 100.00%

Publicador:

Resumo:

D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em que o espaço ambiente é uma variedade riemanniana e M uma hipersuperfície em N requerendo que a função não mude de sinal em M, onde V é um campo de Killing em N. Na parte final deste trabalho consideramos uma variedade riemanniana Killing paralelizável N para definir uma translação Y: M -> Rn de uma hipersuperfície M de N que é uma extensão natural da aplicação de Gauss de uma hipersuperfície de Rn. Considerando as mesmas hipóteses para a imagem de y obtemos uma extensão do resultado original de Hoffman-Osserman-Schoen.